The interplay between ocean circulation and biological productivity affects atmospheric CO2 levels and marine oxygen concentrations. During the warming of the last deglaciation, the North Pacific experienced a peak in productivity and widespread hypoxia, with changes in circulation, iron supply and light limitation all proposed as potential drivers. Here we use the boron-isotope composition of planktic foraminifera from a sediment core in the western North Pacific to reconstruct pH and dissolved CO2 concentrations from 24,000 to 8,000 years ago. We find that the productivity peak during the Bølling–Allerød warm interval, 14,700 to 12,900 years ago, was associated with a decrease in near-surface pH and an increase in pCO2, and must therefore have been driven by increased supply of nutrient- and CO2-rich waters. In a climate model ensemble (PMIP3), the presence of large ice sheets over North America results in high rates of wind-driven upwelling within the subpolar North Pacific. We suggest that this process, combined with collapse of North Pacific Intermediate Water formation at the onset of the Bølling–Allerød, led to high rates of upwelling of water rich in nutrients and CO2, and supported the peak in productivity. The respiration of this organic matter, along with poor ventilation, probably caused the regional hypoxia. We suggest that CO2 outgassing from the North Pacific helped to maintain high atmospheric CO2 concentrations during the Bølling–Allerød and contributed to the deglacial CO2 rise.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Toggweiler, J. R. Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography 14, 571–588 (1999).

  2. 2.

    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

  3. 3.

    Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2011).

  4. 4.

    Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

  5. 5.

    Keigwin, L., Jones, G. A. & Froelich, P. N. A 15,000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific. Earth Planet. Sci. Lett. 111, 425–440 (1992).

  6. 6.

    Kohfeld, K. E. & Chase, Z. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean. Quat. Sci. Rev. 30, 3350–3363 (2011).

  7. 7.

    Jaccard, S. L. et al. Glacial/interglacial changes in subarctic North Pacific stratification. Science 308, 1003–1006 (2005).

  8. 8.

    Jaccard, S. L., Galbraith, E. D., Sigman, D. M. & Haug, G. H. A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800kyrs. Quat. Sci. Rev. 29, 206–212 (2010).

  9. 9.

    Crusius, J., Pedersen, T. F., Kienast, S., Keigwin, L. & Labeyrie, L. Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling–Ållerød interval (14.7–12.9 ka). Geology 32, 633–636 (2004).

  10. 10.

    Behl, R. J. & Kennett, J. P. Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature 379, 243–245 (1996).

  11. 11.

    Praetorius, S. K. et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362–366 (2015).

  12. 12.

    Galbraith, E. D. et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449, 890–893 (2007).

  13. 13.

    Mix, A. C. et al. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U. et al.) 127–148 (American Geophysical Union, Washington, DC, 1999).

  14. 14.

    Lam, P. J. et al. Transient stratification as the cause of the North Pacific productivity spike during deglaciation. Nat. Geosci. 6, 622–626 (2013).

  15. 15.

    Key, R. M. et al. Global Ocean Data Analysis Project Version 2 (GLODAPv2) ORNL/CDIAC-162 (US Department of Energy, 2015); https://doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2

  16. 16.

    Martínez-Botí, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015).

  17. 17.

    Ren, H. et al. Glacial‐to‐interglacial changes in nitrate supply and consumption in the subarctic North Pacific from microfossil‐bound N isotopes at two trophic levels. Paleoceanography 30, 1217–1232 (2015).

  18. 18.

    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Chang. 2, 417–424 (2012).

  19. 19.

    Talley, L. D. Distribution and formation of North Pacific intermediate water. J. Phys. Oceanogr. 23, 517–537 (1993).

  20. 20.

    Keigwin, L. Glacial age hydrography of the far northwest Pacific Ocean. Paleoceanography 13, 323–339 (1998).

  21. 21.

    Max, L. et al. Evidence for enhanced convection of North Pacific Intermediate Water to the low-latitude Pacific under glacial conditions. Paleoceanography 32, 41–55 (2017).

  22. 22.

    Matsumoto, K., Oba, T. & Lynch-Stieglitz, J. Interior hydrography and circulation of the glacial Pacific Ocean. Quat. Sci. Rev. 21, 1693–1704 (2002).

  23. 23.

    Max, L. et al. Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation. Clim. Past. 10, 591–605 (2014).

  24. 24.

    Okazaki, Y. et al. Deepwater formation in the North Pacific during the last glacial termination. Science 329, 200–204 (2010).

  25. 25.

    Rae, J. W. B. et al. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography 29, 645–667 (2014).

  26. 26.

    Cook, M. S. & Keigwin, L. Radiocarbon profiles of the NW Pacific from the LGM and deglaciation: evaluating ventilation metrics and the effect of uncertain surface reservoir ages. Paleoceanography 30, 174–195 (2015).

  27. 27.

    Ullman, D. J., Carlson, A. E., Anslow, F. S., LeGrande, A. N. & Licciardi, J. M. Laurentide ice-sheet instability during the last deglaciation. Nat. Geosci. 8, 534–537 (2015).

  28. 28.

    Serno, S. et al. Comparing dust flux records from the Subarctic North Pacific and Greenland: Implications for atmospheric transport to Greenland and for the application of dust as a chronostraphic tool. Paleoceanography 30, 583–600 (2015).

  29. 29.

    Brunelle, B. G. et al. Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum. Quat. Sci. Rev. 29, 2579–2590 (2010).

  30. 30.

    Galbraith, E. D. et al. Consistent relationship between global climate and surface nitrate utilization in the western subarctic Pacific throughout the last 500 ka. Paleoceanography 23, PA2212 (2008).

  31. 31.

    Hendy, I. L., Pedersen, T. F., Kennett, J. P. & Tada, R. Intermittent existence of a southern Californian upwelling cell during submillennial climate change of the last 60 kyr. Paleoceanography 19, PA3007 (2004).

  32. 32.

    Deutsch, C., Sigman, D. M., Thunell, R. C., Meckler, A. N. & Haug, G. H. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Glob. Biogeochem. Cycles 18, GB4012 (2004).

  33. 33.

    Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

  34. 34.

    Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).

  35. 35.

    McManus, J. F., Francois, R., Gherardi, J. M. & Keigwin, L. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

  36. 36.

    Knudson, K. P. & Ravelo, A. C. North Pacific Intermediate Water circulation enhanced by the closure of the Bering Strait. Paleoceanography 30, PA002840 (2015).

  37. 37.

    Mheust, M., Stein, R., Fahl, K., Max, L. & Riethdorf, J.-R. High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000 years. Geo. Mar. Lett. 36, 101–111 (2015).

  38. 38.

    Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep. Sea Res. II 56, 554–577 (2009).

  39. 39.

    Boyer, T. P. et al. World Ocean Database 2013. NOAA Atlas NESDIS 72 (eds Leviticus, S. & Mishonov, A.) 209 (NOAA, Silver Spring, 2013)

  40. 40.

    Gebhardt, H. et al. Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V. Paleoceanography 23, PA4212 (2008).

  41. 41.

    Jaccard, S. L. et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet. Sci. Lett. 277, 156–165 (2009).

  42. 42.

    Barron, J. A., Bukry, D., Dean, W. E., Addison, J. A. & Finney, B. Paleoceanography of the Gulf of Alaska during the past 15,000 years: results from diatoms, silicoflagellates, and geochemistry. Mar. Micro. 72, 176–195 (2009).

  43. 43.

    Kuroyanagi, A., Kawahata, H. & Nishi, H. Seasonal variation in the oxygen isotopic composition of different-sized planktonic foraminifer Neogloboquadrina pachyderma (sinistral) in the northwestern North Pacific and implications for reconstruction of the paleoenvironment. Paleoceanography 26, PA4215 (2011).

  44. 44.

    Sarnthein, M. et al. Mid Holocene origin of the sea-surface salinity low in the subarctic North Pacific. Quat. Sci. Rev. 23, 2089–2099 (2004).

  45. 45.

    Yu, J. et al. Responses of the deep ocean carbonate system to carbon reorganization during the last glacial-interglacial cycle. Quat. Sci. Rev. 76, 39–52 (2013).

  46. 46.

    Sarnthein, M., Schneider, B. & Grootes, P. M. Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean. Clim. Past. 9, 2595–2614 (2013).

  47. 47.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

  48. 48.

    Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W. & Sutherland, S. C. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Glob. Biogeochem. Cycles 7, 843–878 (1993).

  49. 49.

    Butzin, M., Prange, M. & Lohmann, G. Readjustment of glacial radiocarbon chronologies by self-consistent three-dimensional ocean circulation modeling. Earth Planet. Sci. Lett. 317-318, 177–184 (2012).

  50. 50.

    Kovanen, D. J. & Easterbrook, D. J. Paleodeviations of radiocarbon marine reservoir values for the northeast Pacific. Geology 30, 243–246 (2002).

  51. 51.

    Southon, J. R., Nelson, D. E. & Vogel, J. S. A record of past ocean–atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197–206 (1990).

  52. 52.

    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

  53. 53.

    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

  54. 54.

    Rae, J. W. B., Foster, G. L., SchmidtD. N.. & ElliottT.. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302, 403–413 (2011).

  55. 55.

    Foster, G. L. Seawater pH, pCO2 and [CO32-] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266 (2008).

  56. 56.

    Foster, G. L. et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem. Geol. 358, 1–14 (2013).

  57. 57.

    Boyle, E. A. & Keigwin, L. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76, 135–150 (1985).

  58. 58.

    Elderfield, H. & Ganssen, G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405, 442–445 (2000).

  59. 59.

    Jonkers, L., Jim‚nez-Amat, P., Mortyn, P. G. & Brummer, G.-J. A. Seasonal Mg/Ca variability of N. pachyderma (s) and G. bulloides: implications for seawater temperature reconstruction. Earth Planet. Sci. Lett. 376, 137–144 (2013).

  60. 60.

    Hönisch, B. et al. The influence of salinity on Mg/Ca in planktic foraminifers - evidence from cultures, core-top sediments and complementary δ18O. Geochim. Cosmochim. Acta 121, 196–213 (2013).

  61. 61.

    Gray, W. R. et al. The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): a global sediment trap calibration. Earth Planet. Sci. Lett. 482, 607–620 (2018).

  62. 62.

    Evans, D., Wade, B. S., Henehan, M. J., Erez, J. & Müller, W. Revisiting carbonate chemistry controls on planktic foraminifera Mg/Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition. Clim. Past. 12, 819–835 (2016).

  63. 63.

    Regenberg, M., Regenberg, A., Garbe-Schönberg, D. & Lea, D. W. Global dissolution effects on planktonic foraminiferal Mg/Ca ratios controlled by the calcite-saturation state of bottom waters. Paleoceanography 29, 127–142 (2014).

  64. 64.

    Yu, J., Thornalley, D. J. R., Rae, J. W. B. & McCave, N. I. Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation. Paleoceanography 28, 237–252 (2013).

  65. 65.

    Henehan, M. J. et al. A new boron isotope-pH calibration for Orbulina universa, with implications for understanding and accounting for ‘vital effects’. Earth Planet. Sci. Lett. 454, 282–292 (2016).

  66. 66.

    Henehan, M. J. et al. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet. Sci. Lett. 364, 111–122 (2013).

  67. 67.

    Foster, G. L., Pogge von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11, Q08015 (2010).

  68. 68.

    Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285 (2006).

  69. 69.

    Zeebe, R. E. & Wolf-Gladrow, D. A. CO 2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier Oceanography Series, Amsterdam, 2001).

  70. 70.

    Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 289, 1769–1773 (2002).

  71. 71.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

  72. 72.

    Edgar, K. M., Anagnostou, E., Pearson, P. N. & Foster, G. L. Assessing the impact of diagenesis on δ11B, δ13C, δ18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite. Geochim. Cosmochim. Acta 166, 189–209 (2015).

  73. 73.

    Hain, M. P., Sigman, D. M. & Haug, G. H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model. Glob. Biogeochem. Cycles 24, GB4023 (2010).

  74. 74.

    Gattuso, J.-P. et al. Seacarb: Seawater Carbonate Chemistry with R. R package v.3.1.2 (CRAN, 2017); https://cran.r-project.org/web/packages/seacarb/seacarb.pdf

  75. 75.

    Millero, F. J. et al. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100, 80–94 (2006).

  76. 76.

    Dickson, A. G. Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).

  77. 77.

    Dickson, A. G. & Riley, J. P. The estimation of acid dissociation constants in seawater media from potentionmetric titrations with strong base. I. The ionic product of water - Kw. Mar. Chem. 7, 89–99 (1979).

  78. 78.

    Ezat, M. M., Rasmussen, T. L., Honisch, B., Groeneveld, J. & deMenocal, P. Episodic release of CO2 from the high-latitude North Atlantic Ocean during the last 135kyr. Nat. Commun. 8, 14498 (2017).

  79. 79.

    Riethdorf, J.-R., Max, L., Nürnberg, D., Lembke-Jene, L. & Tiedemann, R. Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: implications for upper-ocean stratification. Paleoceanography 28, 91–104 (2013).

  80. 80.

    Seki, O. et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr. Paleoceanography 19, PA1016 (2004).

  81. 81.

    Seki, O. et al. Large changes in seasonal sea ice distribution and productivity in the Sea of Okhotsk during the deglaciations. Geochem. Geophys. Geosyst. 10, Q10007 (2009).

  82. 82.

    Ganeshram, R. S., Pedersen, T. F., Calvert, S. E., McNeill, G. W. & Fontugne, M. R. Glacial-interglacial variability in denitrification in the worldas oceans: Causes and consequences. Paleoceanography 15, 361–376 (2000).

  83. 83.

    Brunelle, B. G. et al. Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography 22, PA1215 (2007).

  84. 84.

    Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63, 813–839 (2005).

  85. 85.

    Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 86(1), 80–97 (2013).

  86. 86.

    Peterson, C. D., Lisiecki, L. E. & Stern, J. V. Deglacial whole-ocean δ13C change estimated from 480 benthic foraminiferal records. Paleoceanography 29, 549–563 (2014).

  87. 87.

    Otto-Bliesner, B. L. et al. Climate sensitivity of moderate-and low-resolution versions of CCSM3 to preindustrial forcings. J. Clim. 19, 2567–2583 (2006).

  88. 88.

    Otto-Bliesner, B. L. et al. Last Glacial Maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2006).

Download references


We thank M. Sarnthein for providing core material and stimulating discussions, the ‘B-team’ for their accommodation in the National Oceanography Centre Southampton’s laboratories, A. Mortes-Ródenas for assistance with ICP-MS analysis at Cardiff University, and J. Holmes for support throughout the project. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling for the coordination of CMIP and thank the climate modelling groups for producing and making available their model output (https://esgf-node.llnl.gov/search/cmip5/). This work was funded by NERC studentship NE/I528185/1 awarded to W.R.G., NERC studentship NE/1492942/1 to B.T., NERC grant NE/N011716/1 awarded to J.W.B.R and A.B., and NERC grant NE/I013377/1 awarded to A.E.S.

Author information


  1. Department of Geography, University College London, London, UK

    • William R. Gray
  2. School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK

    • William R. Gray
    • , James W. B. Rae
    • , Ben Taylor
    •  & Andrea Burke
  3. Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA

    • Robert C. J. Wills
  4. Department of Earth Sciences, University College London, London, UK

    • Amelia E. Shevenell
  5. College of Marine Science, University of South Florida, St Petersberg, FL, USA

    • Amelia E. Shevenell
  6. Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, UK

    • Gavin L. Foster
  7. School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK

    • Caroline H. Lear


  1. Search for William R. Gray in:

  2. Search for James W. B. Rae in:

  3. Search for Robert C. J. Wills in:

  4. Search for Amelia E. Shevenell in:

  5. Search for Ben Taylor in:

  6. Search for Andrea Burke in:

  7. Search for Gavin L. Foster in:

  8. Search for Caroline H. Lear in:


W.R.G. and J.W.B.R. designed the study and wrote the manuscript. W.R.G., J.W.B.R, G.L.F., C.H.L., B.T. and A.E.S. were involved in the generation of the trace element and δ11B data; R.C.J.W. analysed climate model output; all authors contributed to the interpretation and preparation of the final manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to William R. Gray.

Supplementary information

  1. Supplementary information

    Supplementary Figures and Supplementary Table

  2. Dataset 1

    Supplementary Dataset 1

About this article

Publication history






Further reading