Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns


During the early Archaean, the Earth was too hot to sustain rigid lithospheric plates subject to Wilson Cycle-style plate tectonics. Yet by that time, up to 50% of the present-day continental crust was generated. Preserved continental fragments from the early Archaean have distinct granite-dome/greenstone-keel crust that is interpreted to be the result of a gravitationally unstable stratification of felsic proto-crust overlain by denser mafic volcanic rocks, subject to reorganization by Rayleigh–Taylor flow. Here we provide age constraints on the duration of gravitational overturn in the East Pilbara Terrane. Our U–Pb ages indicate the emplacement of ~3,600–3,460-million-year-old granitoid rocks, and their uplift during an overturn event ceasing about 3,413 million years ago. Exhumation and erosion of this felsic proto-crust accompanied crustal reorganization. Petrology and thermodynamic modelling suggest that the early felsic magmas were derived from the base of thick (~43 km) basaltic proto-crust. Combining our data with regional geochronological studies unveils characteristic growth cycles on the order of 100 million years. We propose that maturation of the early crust over three of these cycles was required before a stable, differentiated continent emerged with sufficient rigidity for plate-like behaviour.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Histogram of the isotope ages from the Muccan Granitic Complex dome and surrounding greenstone belts.
Fig. 2: PT diagram for felsic proto-crust formation and emplacement, and its exhumation during the first RTI.
Fig. 3: Synoptic timeline and model illustration for early Archaean proto-crust formation and stabilization over ~100 Myr growth cycles.


  1. 1.

    Van Thienen, P., Vlaar, N. J. & van den Berg, A. P. Plate tectonics on the terrestrial planets. Phys. Earth Planet. Inter. 142, 61–74 (2004).

    Article  Google Scholar 

  2. 2.

    Bédard, J. H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70, 1188–1214 (2006).

    Article  Google Scholar 

  3. 3.

    Hoffmann, J. E., Nagel, T. J., Münker, C., Næraa, T. & Rosing, M. T. Constraining the process of Eoarchean TTG formation in the Itsaq Gneiss Complex, southern West Greenland. Earth Planet. Sci. Lett. 388, 374–386 (2014).

    Article  Google Scholar 

  4. 4.

    Moore, W. B. & Webb, A. A. G. Heat-pipe Earth. Nature 501, 501–505 (2013).

    Article  Google Scholar 

  5. 5.

    Sizova, E., Gerya, T., Stüwe, K. & Brown, M. Generation of felsic crust in the Archean: a geodynamic modelling perspective. Precamb. Res. 271, 198–224 (2015).

    Article  Google Scholar 

  6. 6.

    Hastie, A. R., Fitton, J. G., Bromiley, G. D., Butler, I. B. & Odling, N. W. A. The origin of Earth's first continents and the onset of plate tectonics. Geology 44, 855–858 (2016).

    Article  Google Scholar 

  7. 7.

    Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J. & Gerya, T. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017).

    Article  Google Scholar 

  8. 8.

    Bédard, J. H. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front 9, 19–49 (2018).

    Article  Google Scholar 

  9. 9.

    Kamber, B. S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precamb. Res. 258, 48–82 (2015).

    Article  Google Scholar 

  10. 10.

    Van Kranendonk, M. J., Smithies, R. H., Hickman, A. H., Wingate, M. T. D. & Bodorkos, S. Evidence for Mesoarchean (~3.2 Ga) rifting of the Pilbara Craton: the missing link in an early Precambrian Wilson cycle. Precamb. Res 177, 145–161 (2010).

    Article  Google Scholar 

  11. 11.

    Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    Article  Google Scholar 

  12. 12.

    Debaille, V. et al. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013).

    Article  Google Scholar 

  13. 13.

    Sharp, D. H. An overview of Rayleigh-Taylor instability. Phys. D 12, 3–18 (1984).

    Article  Google Scholar 

  14. 14.

    Collins, W. J., Van Kranendonk, M. J. & Teyssier, C. Partial convective overturn of Archaean crust in the Pilbara Craton, Western Australia: driving mechanisms and tectonic Implications. J. Struct. Geol. 20, 1405–1424 (1998).

    Article  Google Scholar 

  15. 15.

    Thébaud, N. & Rey, P. F. Archean gravity-driven tectonics on hot and flooded continents: controls on long-lived mineralized hydrothermal systems away from continental margins. Precamb. Res. 229, 93–104 (2013).

    Article  Google Scholar 

  16. 16.

    François, C., Philippot, P., Rey, P. & Rubatto, D. Burial and exhumation during Archean sagduction in the East Pilbara Granite-Greenstone Terrane. Earth Planet. Sci. Lett. 396, 235–251 (2014).

    Article  Google Scholar 

  17. 17.

    Van Kranendonk, M. J. et al. in Continent Formation Through Time Spec. Pub. Vol. 389 (eds Roberts, N. M. W. et al.) 83–111 (Geological Society, London, 2015).

  18. 18.

    Robin, C. M. I. & Bailey, R. C. Simultaneous generation of Archean crust and subcratonic roots by vertical tectonics. Geology 37, 523–526 (2009).

    Article  Google Scholar 

  19. 19.

    Smithies, R. H., Van Kranendonk, M. J. & Champion, D. C. It started with a plume—early Archaean basaltic proto-continental crust. Earth Planet. Sci. Lett. 238, 284–297 (2005).

    Article  Google Scholar 

  20. 20.

    Kamber, B. S., Whitehouse, M. J., Bolhar, R. & Moorbath, S. Volcanic resurfacing and the early terrestrial crust: zircon U-Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland. Earth Planet. Sci. Lett. 240, 276–290 (2005).

    Article  Google Scholar 

  21. 21.

    Smithies, R. H., Champion, D. C. & Van Kranendonk, M. J. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet. Sci. Lett. 281, 298–306 (2009).

    Article  Google Scholar 

  22. 22.

    Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–242 (2017).

    Article  Google Scholar 

  23. 23.

    Kemp, A. I. S., Hickman, A. H., Kirkland, C. L. & Vervoort, J. D. Hf isotopes in detrital and inherited zircons of the Pilbara Craton provide no evidence for Hadean continents. Precamb. Res. 261, 112–126 (2015).

    Article  Google Scholar 

  24. 24.

    Taylor, J., Zeh, A. & Gerdes, A. U-Pb-Hf isotope systematics of detrital zircons in high-grade paragneisses of the Ancient Gneiss Complex, Swaziland: evidence for two periods of juvenile crust formation,Paleo- and Mesoarchean sediment deposition, and 3.23 Ga terrane accretion. Precamb. Res. 280, 205–220 (2016).

    Article  Google Scholar 

  25. 25.

    Buick, R. et al. Record of emergent continental crust ~3.5 billion years ago in the Pilbara craton of Australia. Nature 375, 574–577 (1995).

    Article  Google Scholar 

  26. 26.

    Wiemer, D., Schrank, C. E., Murphy, D. T. & Hickman, A. H. Lithostratigraphy and structure of the early Archaean Doolena Gap greenstone belt, East Pilbara Terrane, Western Australia. Precamb. Res. 282, 121–138 (2016).

    Article  Google Scholar 

  27. 27.

    Hickman, A. H. & Van Kranendonk, M. J. Early Earth evolution: evidence from the 3.5-1.8 Ga geological history of the Pilbara region of Western Australia. Episodes 35, 283–297 (2012).

    Google Scholar 

  28. 28.

    Hickman, A. H. Regional Review of the 3426–3350Ma Strelley Pool Formation, Pilbara Craton, Western Australia Record 2008/15 (Geological Survey of Western Australia, 2008).

  29. 29.

    Johnson, T. E., Brown, M., Kaus, B. J. P. & Van Tongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014).

    Article  Google Scholar 

  30. 30.

    Schmidt, M. W. & Poli, S. Magmatic epidote. Rev. Mineral. Geochem. 56, 399–430 (2004).

    Article  Google Scholar 

  31. 31.

    Palin, R. M., White, R. W. & Green, E. C. R. Partial melting of metabasic rocks and the generation of tonalitic-trondhjemitic-granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling. Precamb. Res. 287, 73–90 (2016).

    Article  Google Scholar 

  32. 32.

    Bodorkos, S. & Sandiford, M. in Archean Geodynamics and Environments Mono. Ser. Vol. 164 (eds Benn, K. et al.) 1–17 (American Geophysical Union, 2006).

  33. 33.

    Korenaga, J. Initiation and Evolution of Plate Tectonics on Earth: theories and Observations. Annu. Rev. Earth Planet. Sci. 41, 117–151 (2013).

    Article  Google Scholar 

  34. 34.

    Smithies, R. H., Champion, D. C. & Cassidy, K. F. Formation of Earth’s early Archaean continental crust. Precamb. Res. 127, 89–101 (2003).

    Article  Google Scholar 

  35. 35.

    Lana, C., Tohver, E. & Cawood, P. Quantifying rates of dome-and-keel formation in the Barberton granitoid-greenstone belt, South Africa. Precamb. Res. 177, 199–211 (2010).

    Article  Google Scholar 

  36. 36.

    Zegers, T. E., de Wit, M. J., Dann, J. & White, S. H. Vaalbara, Earth’s oldest assembled supercontinent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10, 250–259 (1998).

    Article  Google Scholar 

  37. 37.

    Drabon, N., Lowe, D. R., Byerly, G. R. & Harrington, J. A. Detrital zircon geochronology of sandstones of the 3.6-3.2 Ga Barberton greenstone belt: no evidence for older continental crust. Geology 45, 803–806 (2017).

    Article  Google Scholar 

  38. 38.

    Srinivasa Sarma, D., McNaughton, N. J., Belousova, E., Ram Mohan, M. & Fletcher, I. R. Detrital zircon U-Pb ages and Hf-isotope systematics from the Gadag Greenstone Belt: Archean crustal growth in the western Dharwar Craton, India. Gondwana Res. 22, 843–854 (2012).

    Article  Google Scholar 

  39. 39.

    Guitreau, M., Mukasa, S. B., Loudin, L. & Krishnan, S. New constraints on the early formation of the Western Dharwar Craton (India) from igneous zircon U-Pb and Lu-Hf isotopes. Precamb. Res. 302, 33–49 (2017).

    Article  Google Scholar 

  40. 40.

    Lancaster, P. J., Dey, S., Storey, C. D., Mitra, A. & Bhunia, R. K. Contrasting crustal evolution processes in the Dharwar craton: Insights from detrital zircon U-Pb and Hf isotopes. Gondwana Res. 28, 1361–1372 (2015).

    Article  Google Scholar 

  41. 41.

    Horstwood, M. S. A., Nesbitt, R. W., Noble, S. R. & Wilson, J. F. U-Pb zircon evidence for an extensive early Archean craton in Zimbabwe: a reassessment of the timing of craton formation, stabilization, and growth. Geology 27, 707–710 (1999).

    Article  Google Scholar 

  42. 42.

    Bolhar, R. et al. Juvenile crust formation in the Zimbabwe Craton deduced from O-Hf isotopic record of 3.8-3.1 Ga detrital zircons. Geochim. Cosmochim. Acta 215, 432–446 (2017).

    Article  Google Scholar 

  43. 43.

    Nagel, T. J., Hoffmann, J. E. & Münker, C. Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic crust. Geology 40, 375–378 (2012).

    Article  Google Scholar 

  44. 44.

    Hawkesworth, C. J., Cawood, P. A. & Dhuime, B. Tectonics and crustal evolution. GSA Today 26, 4–11 (2016).

    Article  Google Scholar 

  45. 45.

    Wilson, J. T. Static or mobile Earth: the current scientific revolution. Proc. Am. Phil. Soc. 112, 309–320 (1968).

    Google Scholar 

  46. 46.

    Wiemer, D., Allen, C. M., Murphy, D. T. & Kinaev, I. Effects of thermal annealing and chemical abrasion on ca. 3.5 Ga metamict zircon and evidence for natural reverse discordance: insights for U-Pb LA-ICP-MS dating. Chem. Geol. 466, 285–302 (2017).

    Article  Google Scholar 

  47. 47.

    Black, L. P. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 115–140 (2004).

    Article  Google Scholar 

  48. 48.

    Sláma, J. et al. Plešovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).

    Article  Google Scholar 

  49. 49.

    Jochum, K. P. et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res 35, 397–429 (2011).

    Article  Google Scholar 

  50. 50.

    Paton, C. et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction . Geochem. Geophys. 11, Q0AA06 (2010).

    Google Scholar 

  51. 51.

    Watson, E. B., Wark, D. A. & Thomas, J. B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413–433 (2006).

    Article  Google Scholar 

  52. 52.

    Markwitz, V. et al. Variations in zircon provenance constrain age and geometry of an early Paleozoic rift in the Pinjarra Orogen, East Gondwana. Tectonics 36, 2477–2496 (2017).

    Article  Google Scholar 

  53. 53.

    Pidgeon, R. T. Zircon radiation damage ages. Chem. Geol. 367, 13–22 (2014).

    Article  Google Scholar 

  54. 54.

    Weber, U. D., Kohn, B. P. & Gleadow, A. J. W. Muccan Batholith, Eastern Pilbara, Western Australia (Cooperative Research Centre for Landscape Environments and Mineral Exploration, 2004).

  55. 55.

    Kennedy, A. K., Kamo, S. L., Nasdala, L. & Timms, N. E. Grenville skarn titanite: potential reference material for SIMS U-Th-Pb analysis. Canad. Mineral. 48, 1423–1443 (2010).

    Article  Google Scholar 

  56. 56.

    Allen, C. M., Williams, I. S., Stephens, C. J. & Fielding, C. R. Granite genesis and basin formation in an extensional setting: the magmatic history of the Northernmost New England Orogen. Aust. J. Earth Sci. 45, 875–888 (1998).

    Article  Google Scholar 

  57. 57.

    Chew, D. M., Petrus, J. A. & Kamber, B. S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 363, 185–199 (2014).

    Article  Google Scholar 

  58. 58.

    Smithies, R. H., Champion, D. C., Van Kranendonk, M. J. & Hickman, A. H. Geochemistry of Volcanic Rocks of the Northern Pilbara Craton, Western Australia Report no. 104 (Western Australia Geological Survey, 2007).

  59. 59.

    Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. 10, Q10014 (2009).

    Google Scholar 

  60. 60.

    Holland, T. J. B. & Powell, R. An improved and extended internally consistent dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29, 333–383 (2011).

    Article  Google Scholar 

  61. 61.

    Green, E. C. R. et al. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 34, 845–869 (2016).

    Article  Google Scholar 

  62. 62.

    White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E. & Green, E. C. R. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 32, 511–527 (2014).

    Google Scholar 

  63. 63.

    Holland, T. J. B. & Powell, R. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 145, 492–501 (2003).

    Article  Google Scholar 

  64. 64.

    White, R. W., Powell, R., Holland, T. J. B. & Worley, B. A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 18, 497–511 (2000).

    Article  Google Scholar 

  65. 65.

    White, R. W., Powell, R. & Clarke, G. L. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 20, 41–55 (2002).

    Article  Google Scholar 

  66. 66.

    Berry, A. J., Danyushevsky, L. V., O’Neill, H., Newville, M. & Sutton, S. R. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–963 (2008).

    Article  Google Scholar 

  67. 67.

    Polat, A. Growth of Archean continental crust in oceanic island arcs. Geology 40, 383–384 (2012).

    Article  Google Scholar 

  68. 68.

    Martin, H., Moyen, J.-F., Guitreau, M., Blichert-Toft, J. & Le Pennec, J.-L. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 198-199, 1–13 (2014).

    Article  Google Scholar 

  69. 69.

    Condie, K. C. Archean geotherms and supracrustal assemblages. Tectonophysics 105, 29–41 (1984).

    Article  Google Scholar 

  70. 70.

    Moyen, J.-F. & Martin, H. Forty years of TTG research. Lithos 148, 312–336 (2012).

    Article  Google Scholar 

  71. 71.

    Green, E. C. R., Holland, T. J. B. & Powell, R. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogite rocks. Am. Mineral. 92, 1181–1189 (2007).

    Article  Google Scholar 

  72. 72.

    Diener, J. F. A. & Powell, R. Revised activity-composition models for clinopyroxene and amphibole. J. Metamorph. Geol. 30, 131–142 (2011).

    Article  Google Scholar 

  73. 73.

    Pattinson, D. R. M. Petrogenetic significance of orthopyroxene-free garnet + clinopyroxene + plagioclase ± quartz-bearing metabasites with respect to the amphibolite and granulite facies. J. Metamorph. Geol. 21, 21–34 (2003).

    Article  Google Scholar 

  74. 74.

    Shaw, D. M. Trace element fractionation during anatexis. Geochim. Cosmochim. Acta 34, 237–243 (1970).

    Article  Google Scholar 

  75. 75.

    Martin, H. Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from Eastern Finland: major and trace element geochemistry. J. Petrol. 28, 921–953 (1987).

    Article  Google Scholar 

  76. 76.

    Neuman, H., Mead, J. & Vitaliano, C. J. Trace element variation during fractional crystallization as calculated from the distribution law. Geochim. Cosmochim. Acta 6, 90–99 (1954).

    Article  Google Scholar 

  77. 77.

    Leeman, W. P. & Phelps, D. W. Partitioning of rare Earths and other trace elements between sanidine and coexisting volcanic glass. J. Geophys. Res. 86, 10193–10199 (1981).

    Article  Google Scholar 

Download references


The Geological Survey of Western Australia supported fieldwork logistics. Analytics were carried out at the Central Analytical Research Facility (CARF), Institute for Future Environments, Queensland University of Technology (QUT). Staff of the CARF assisted sample preparation. K.H. Moromizato assisted LA-ICP-MS analyses. The findings of this study are based on a PhD thesis by D.W. (QUT). Titanite geochronological data are from an MSc thesis by L.W. (QUT).

Author information




D.W., C.E.S. and D.T.M conducted field work and came up with the idea of the paper. D.T.M conceived the project. D.W. wrote the manuscript draft of the paper and drafted the figures. All authors contributed to discussions and writing of the final paper. D.W., C.M.A. and L.W. generated and evaluated geochronological data. D.W. and D.T.M. evaluated geochemical data. D.W. performed thermodynamic calculations.

Corresponding author

Correspondence to Daniel Wiemer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures

Supplementary Table 1

Zircon U–Pb data

Supplementary Table 2

Titanite U–Pb data

Supplementary Table 3

Rock geochemical data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wiemer, D., Schrank, C.E., Murphy, D.T. et al. Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nature Geosci 11, 357–361 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing