Abstract
The methane-based hydrologic cycle on Saturn’s largest moon, Titan, is an extreme analogue to Earth’s water cycle. Titan is the only planetary body in the Solar System, other than Earth, that is known to have an active hydrologic cycle. With a surface pressure of 1.5 bar and temperatures of 90 to 95 K, methane and ethane condense out of a nitrogen-based atmosphere and flow as liquids on the moon’s surface. Exchange processes between atmospheric, surface and subsurface reservoirs produce methane and ethane cloud systems, as well as erosional and depositional landscapes that have strikingly similar forms to their terrestrial counterparts. Over its 13-year exploration of the Saturn system, the Cassini–Huygens mission revealed that Titan’s hydrocarbon-based hydrology is driven by nested methane cycles that operate over a range of timescales, including geologic, orbital (for example, Croll–Milankovitch cycles), seasonal and that of a single convective storm. In this Review Article, we describe the dominant exchange processes that operate over these timescales and present a post-Cassini view of Titan’s methane-based hydrologic system.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Lunine, J. I., Stevenson, D. J. & Yung, Y. L. Ethane ocean on Titan. Science 222, 1229–1230 (1983).
Toon, O. B., Mckay, C. P., Courtin, R. & Ackerman, T. P. Methane rain on Titan. Icarus 75, 255–284 (1988).
Flasar, F. M. Oceans on Titan. Science 221, 55–57 (1983).
Lindal, G. F. et al. The atmosphere of Titan – an analysis of the Voyager-1 radio occultation measurements. Icarus 53, 348–363 (1983).
Lellouch, E. et al. Titans atmosphere and hypothesized ocean – a reanalysis of the Voyager-1 radio-occultation and Iris 7.7-micron data. Icarus 79, 328–349 (1989).
Yung, Y. L., Allen, M. & Pinto, J. P. Photochemistry of the atmosphere of Titan – comparison between model and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984).
Lorenz, R. D. & Lunine, J. I. Erosion on Titan: past and present. Icarus 122, 79–91 (1996).
Mckay, C. P., Pollack, J. B. & Courtin, R. The thermal structure of Titans atmosphere. Icarus 80, 23–53 (1989).
Lorenz, R. D. Planetary science - the weather on Titan. Science 290, 467–468 (2000).
Leovy, C. B. & Pollack, J. B. First look at atmospheric dynamics and temperature variations on Titan. Icarus 19, 195–201 (1973).
Brown, M. E., Roberts, J. E. & Schaller, E. L. Clouds on Titan during the Cassini prime mission: a complete analysis of the VIMS data. Icarus 205, 571–580 (2010).
Mitchell, J. L. The drying of Titan’s dunes: Titan’s methane hydrology and its impact on atmospheric circulation. J. Geophys. Res. Planets https://doi.org/10.1029/2007je003017 (2008).
Mitchell, J. L. & Lora, J. M. The Climate of Titan. Annu. Rev. Earth Planet. Sci. 44, 353–380 (2016).
Griffith, C. A., Owen, T., Miller, G. A. & Geballe, T. Transient clouds in Titan’s lower atmosphere. Nature 395, 575–578 (1998).
Roe, H. G., de Pater, I., Macintosh, B. A. & McKay, C. P. Titan’s clouds from gemini and keck adaptive optics imaging. Astrophys. J. 581, 1399–1406 (2002).
Brown, M. E., Bouchez, A. H. & Griffith, C. A. Direct detection of variable tropospheric clouds near Titan’s south pole. Nature 420, 795–797 (2002).
Gibbard, S. G. et al. Speckle imaging of Titan at 2 microns: surface albedo, haze optical depth, and tropospheric clouds 1996–1998. Icarus 169, 429–439 (2004).
Rannou, P., Montmessin, F., Hourdin, F. & Lebonnois, S. The latitudinal distribution of clouds on Titan. Science 311, 201–205 (2006).
Schaller, E. L., Brown, M. E., Roe, H. G., Bouchez, A. H. & Trujillo, C. A. Dissipation of Titan’s south polar clouds. Icarus 184, 517–523 (2006).
Rodriguez, S. et al. Titan’s cloud seasonal activity from winter to spring with Cassini/VIMS. Icarus 216, 89–110 (2011).
Porco, C. C. et al. Imaging of Titan from the Cassini spacecraft. Nature 434, 159–168 (2005).
Hirtzig, M. et al. Monitoring atmospheric phenomena on Titan. Astron. Astrophys. 456, 761–774 (2006).
Niemann, H. B. et al. The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779–784 (2005).
Griffith, C. A. et al. The evolution of Titan’s mid-latitude clouds. Science 310, 474–477 (2005).
Griffith, C. A. et al. Characterization of clouds in Titan’s tropical atmosphere. Atrophys. J. Lett. 702, L105–L109 (2009).
Schaller, E. L., Roe, H. G., Schneider, T. & Brown, M. E. Storms in the tropics of Titan. Nature 460, 873–875 (2009).
Ádámkovics, M., Barnes, J. W., Hartung, M. & de Pater, I. Observations of a stationary mid-latitude cloud system on Titan. Icarus 208, 868–877 (2010).
Niemann, H. B. et al. Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. Planets 115, E12006 (2010).
Turtle, E. P. et al. Rapid and extensive surface changes near Titan’s equator: evidence of April showers. Science 331, 1414 (2011).
Griffith, C. A. et al. Evidence for a polar ethane cloud on Titan. Science 313, 1620 (2006).
Adamkovics, M. et al. Meridional variation in tropospheric methane on Titan observed with AO spectroscopy at Keck and VLT. Icarus 270, 376–388 (2016).
Lora, J. M. & Ádámkovics, M. The near-surface methane humidity on Titan. Icarus 286, 270–279 (2017).
Turtle, E. P. et al. Cassini imaging of Titan’s high-latitude lakes, clouds, and south-polar surface changes. Geophys. Res. Lett. 36, L02204 (2009).
Tomasko, M. G. et al. Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature 438, 765–778 (2005).
Stofan, E. R. et al. The lakes of Titan. Nature 445, 61–64 (2007).
Hayes, A. et al. Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith. Geophys. Res. Lett. 35, L09204 (2008).
Hayes, A. G. The lakes and seas of Titan. Annu. Rev. Earth Planet. Sci. 44, 57–83 (2016).
Hayes, A. G. et al. Bathymetry and absorptivity of Titan’s Ontario Lacus. J. Geophys. Res. Planets 115, E003557 (2010).
Hayes, A. G. et al. Transient surface liquid in Titan’s polar regions from Cassini. Icarus 211, 655–671 (2011).
Birch, S. P. D. et al. Morphological evidence that Titan’s southern hemisphere basins are paleoseas. Icarus https://doi.org/10.1016/j.icarus.2017.12.016 (2018).
Moore, J. M. & Howard, A. D. Are the basins of Titan’s Hotei Regio and Tui Regio sites of former low latitude seas? Geophys. Res. Lett. 38, L04201 (2011).
Barnes, J. W. et al. Cassini observations of flow-like features in western Tui Regio, Titan. Geophys. Res. Lett. 33, L16204 (2006).
Wall, S. D. et al. Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: evidence for geologically recent cryovolcanic activity. Geophys. Res. Lett. 36, L04203 (2009).
Lopes, R. M. C. et al. Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. J. Geophys. Res. Planets 118, 416–435 (2013).
Griffith, C. A. et al. Possible tropical lakes on Titan from observations of dark terrain. Nature 486, 237–239 (2012).
Vixie, G. et al. Possible temperate lakes on Titan. Icarus 257, 313–323 (2015).
Wye, L. C., Zebker, H. A. & Lorenz, R. D. Smoothness of Titan’s Ontario Lacus: constraints from Cassini RADAR specular reflection data. Geophys. Res. Lett. 36, L16201 (2009).
Zebker, H. et al. Surface of Ligeia Mare, Titan, from Cassini altimeter and radiometer analysis. Geophys. Res. Lett. 41, 308–313 (2014).
Stephan, K. et al. Specular reflection on Titan: liquids in Kraken Mare. Geophys. Res. Lett. 37, L07104 (2010).
Grima, C. et al. Surface roughness of Titan’s hydrocarbon seas. Earth Planet. Sci. Lett. 474, 20–24 (2017).
Barnes, J. et al. Cassini/VIMS observes rough surfaces on Titan’s Punga Mare in specular reflection. Planet. Sci. https://doi.org/10.1186/s13535-014-0003-4 (2014).
Hofgartner, J. D. et al. Transient features in a Titan sea. Nat. Geosci. 7, 493–496 (2014).
Lorenz, R. D. & Hayes, A. G. The growth of wind-waves in Titan’s hydrocarbon seas. Icarus 219, 468–475 (2012).
Hayes, A. G. et al. Wind driven capillary-gravity waves on Titan?s lakes: hard to detect or non-existent? Icarus 225, 403–412 (2013).
Mastrogiuseppe, M. et al. The bathymetry of a Titan sea. Geophys. Res. Lett. 41, 1432–1437 (2014).
Mastrogiuseppe, M. et al. Bathymetry and composition of Titan’s Ontario Lacus derived from Monte Carlo-based waveform inversion of Cassini RADAR altimetry data. Icarus 300, 203–209 (2017).
Mastrogiuseppe, M. et al. Radar sounding using the Cassini altimeter: waveform modeling and Monte Carlo approach for data inversion of observations of Titan’s seas. IEEE Trans. Geosci. Remote Sens 54, 5646–5656 (2016).
Lorenz, R. D. et al. Titan’s inventory of organic surface materials. Geophys. Res. Lett. 35, L02206 (2008).
Lorenz, R. D. et al. A radar map of Titan seas: tidal dissipation and ocean mixing through the throat of Kraken. Icarus 237, 9–15 (2014).
Mitchell, K. L., Barmatz, M. B., Jamieson, C. S., Lorenz, R. D. & Lunine, J. I. Laboratory measurements of cryogenic liquid alkane microwave absorptivity and implications for the composition of Ligeia Mare, Titan. Geophys. Res. Lett. 42, 1340–1345 (2015).
Glein, C. R. & Shock, E. L. A geochemical model of non-ideal solutions in the methane-ethane-propane-nitrogen-acetylene system on Titan. Geochim. Cosmochim. Ac. 115, 217–240 (2013).
Tan, S. P. et al. Titan’s liquids: exotic behavior and its implications on global fluid circulation. Icarus 250, 64–75 (2015).
Brown, R. H. et al. The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454, 607–610 (2008).
Lunine, J. I. & Atreya, S. K. The methane cycle on Titan. Nat. Geosci. 1, 159–164 (2008).
Lunine, J. I. & Horst, S. M. Organic chemistry on the surface of Titan. Rend. Fis. Acc. Lincei 22, 183–189 (2011).
Vinatier, S. et al. Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission: I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles. Icarus 205, 559–570 (2010).
Wilson, E. H. & Atreya, S. K. Titan’s carbon budget and the case of the missing ethane. J. Phys. Chem. A 113, 11221–11226 (2009).
Lavvas, P. P., Coustenis, A. & Vardavas, I. M. Coupling photochemistry with haze formation in Titan’s atmosphere, part I: model description. Planet. Space Sci. 56, 27–66 (2008).
Clark, R. N. et al. Detection and mapping of hydrocarbon deposits on Titan. J. Geophys. Res. Planets 115, E10005 (2010).
Singh, S. et al. Acetylene on Titan’s surface. Astrophys. J. 828, 55 (2016).
Yelle, R. V., Cui, J. & Muller-Wodarg, I. C. F. Methane escape from Titan’s atmosphere. J. Geophys. Res. Planets 113, E10003 (2008).
Nixon, C. A. et al. Isotopic ratios in Titan’s methane: measurements and modeling. Astrophys. J. 749, 159 (2012).
Schneider, T., Graves, S. D. B., Schaller, E. L. & Brown, M. E. Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature 481, 58–61 (2012).
Lora, J. M., Lunine, J. I., Russell, J. L. & Hayes, A. G. Simulations of Titan’s paleoclimate. Icarus 243, 264–273 (2014).
Lora, J. M. & Mitchell, J. L. Titan’s asymmetric lake distribution mediated by methane transport due to atmospheric eddies. Geophys. Res. Lett. 42, 6213–6220 (2015).
Aharonson, O. et al. An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nat. Geosci. 2, 851–854 (2009).
Lora, J. M., Lunine, J. I. & Russell, J. L. GCM simulations of Titan’s middle and lower atmosphere and comparison to observations. Icarus 250, 516–528 (2015).
Mitchell, J. L., Adamkovics, M., Caballero, R. & Turtle, E. P. Locally enhanced precipitation organized by planetary-scale waves on Titan. Nat. Geosci. 4, 589–592 (2011).
Birch, S. P. D., Hayes, A. G., Howard, A. D., Moore, J. & Radebaugh, J. Alluvial fan morphology, distribution, and formation on Titan. Icarus 270, 238–247 (2016).
Radebaugh, J. et al. Alluvial and fluvial fans on Saturn's moon Titan reveal processes, materials and regional geology. Geolog. Soc. Specl. Public. https://doi.org/10.1144/sp440.6 (2016).
Wall, S. et al. Active shoreline of Ontario Lacus, Titan: a morphological study of the lake and its surroundings. Geophys. Res. Lett. https://doi.org/10.1029/2009GL041821 (2010).
Moore, J. M., Howard, A. D. & Morgan, A. M. The landscape of Titan as witness to its climate evolution. J. Geophys. Res. Planets 119, 2060–2077 (2014).
Elachi, C. et al. Cassini radar views the surface of Titan. Science 308, 970–974 (2005).
Lorenz, R. D. et al. Fluvial channels on Titan: initial Cassini RADAR observations. Planet. Space Sci. 56, 1132–1144 (2008).
Burr, D. M. et al. Fluvial network analysis on Titan: evidence for subsurface structures and west-to-east wind flow, southwestern Xanadu. Geophys. Res. Lett. 36, L22203 (2009).
Jaumann, R. et al. Fluvial erosion and post-erosional processes on Titan. Icarus 197, 526–538 (2008).
Black, B. A., Perron, J. T., Burr, D. M. & Drummond, S. A. Estimating erosional exhumation on Titan from drainage network morphology. J. Geophys. Res. Planets 117, E08006 (2012).
Burr, D. M., Drummond, S. A., Cartwright, R., Black, B. A. & Perron, J. T. Morphology of fluvial networks on Titan: evidence for structural control. Icarus 226, 742–759 (2013).
Langhans, M. H. et al. Titan’s fluvial valleys: morphology, distribution, and spectral properties. Planet. Space Sci. 60, 34–51 (2012).
Soderblom, L. A. et al. Topography and geomorphology of the Huygens landing site on Titan. Planet. Space Sci. 55, 2015–2024 (2007).
Perron, J. T. et al. Valley formation and methane precipitation rates on Titan. J. Geophys. Res. Planets 111, E11001 (2006).
Poggiali, V. et al. Liquid-filled canyons on Titan. Geophys. Res. Lett. 43, 7887–7894 (2016).
Barnes, J. W. et al. Shoreline features of Titan’s Ontario Lacus from Cussini/VIMS observations. Icarus 201, 217–225 (2009).
Radebaugh, J. Dunes on Saturn’s moon Titan as revealed by the Cassini Mission. Aeolian Res. 11, 23–41 (2013).
Brown, R. H., Griffith, C. A., Lunine, J. I. & Barnes, J. W. Polar Caps on Titan? (European Planetary Science Congress, 2006); http://adsabs.harvard.edu/abs/2006epsc.conf..602B
Hayes, A. G. et al. Topographic constraints on the evolution and connectivity of Titan’s Lacustrine Basins. Geophys. Res. Lett. 44, 745–753 (2017).
Lorenz, R. D., Niemann, H. B., Harpold, D. N., Way, S. H. & Zarnecki, J. C. Titan’s damp ground: constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet. Meteorit. Planet. Sci. 41, 1705–1714 (2006).
Horvath, D. G., Andrews-Hanna, J. C., Newman, C. E., Mitchell, K. L. & Stiles, B. W. The influence of subsurface flow on lake formation and north polar lake distribution on Titan. Icarus 277, 103–124 (2016).
Birch, S. P. D. et al. Geomorphologic mapping of Titan’s polar terrains: constraining surface processes and landscape evolution. Icarus 282, 214–236 (2017).
Beghin, C., Sotin, C. & Hamelin, M. Titan’s native ocean revealed beneath some 45 km of ice by a Schumann-like resonance. CR Geosci. 342, 425–433 (2010).
Iess, L. et al. The tides of Titan. Science 337, 457–459 (2012).
Mitri, G. et al. Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177 (2014).
Lewis, J. S. Satellites of outer planets - their physical and chemical nature. Icarus 15, 174–185 (1971).
Lunine, J. I. & Stevenson, D. J. Clathrate and ammonia hydrates at high-pressure - application to the origin of methane on Titan. Icarus 70, 61–77 (1987).
Osegovic, J. P. & Max, M. D. Compound clathrate hydrate on Titan’s surface. J. Geophys. Res. Planets 110, E08004 (2005).
Loveday, J. S. et al. Stable methane hydrate above 2 GPa and the source of Titan’s atmospheric methane. Nature 410, 661–663 (2001).
Durham, W. B., Kirby, S. H., Stern, L. A. & Zhang, W. The strength and rheology of methane clathrate hydrate. J. Geophys. Res. Solid Earth 108, 2182 (2003).
Choukroun, M., Grasset, O., Tobie, G. & Sotin, C. Stability of methane clathrate hydrates under pressure: influence on outgassing processes of methane on Titan. Icarus 205, 581–593 (2010).
Tobie, G., Lunine, J. I. & Sotin, C. Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440, 61–64 (2006).
Choukroun, M. & Sotin, C. Is Titan’s shape caused by its meteorology and carbon cycle? Geophys. Res. Lett. 39, L04201 (2012).
Turtle, E. P. et al. Seasonal changes in Titan's meteorology. Geophys. Res. Lett. 38, L03203 (2011).
MacKenzie, S. M. et al. Evidence of Titan's climate history from evaporite distribution. Icarus 243, 191–207 (2014).
Hörst, S. M. Titan's atmosphere and climate. J. Geophys. Res. Planets 122, 432–482 (2017).
Hueso, R. & Sanchez-Lavega, A. Methane storms on Saturn’s moon Titan. Nature 442, 428–431 (2006).
Barth, E. L. & Rafkin, S. C. R. TRAMS: a new dynamic cloud model for Titan’s methane clouds. Geophys. Res. Lett. 34, L03203 (2007).
Lorenz, R. D. The life, death and afterlife of a raindrop on Titan. Planet. Space Sci. 41, 647–655 (1993).
Graves, S. D. B., Mckay, C. P., Griffith, C. A., Ferri, F. & Fulchignoni, M. Rain and hail can reach the surface of Titan. Planet. Space Sci. 56, 346–357 (2008).
Awal, M. & Lunine, J. I. Moist convective clouds in Titan's atmosphere. Geophys. Geophys. Res. Lett. 21, 2491–2494 (1994).
Lellouch, E. et al. The distribution of methane in Titan’s stratosphere from Cassini/CIRS observations. Icarus 231, 323–337 (2014).
Faulk, S. P., Mitchell, J. L., Moon, S. & Lora, J. M. Regional patterns of extreme precipitation on Titan consistent with observed alluvial fan distribution. Nat. Geosci. 10, 827–831 (2017).
Lorenz, R. D. Titan is to Earth’s Hydrological Cycle what Venus is to its Greenhouse Effect Abstract no. 8053 (Comparative Climatology of Terrestrial Planets, 2012).
Solomonidou, A. et al. Temporal variations of Titan’s surface with Cassini/VIMS. Icarus 270, 85–99 (2016).
Ward, W. R. & Hamilton, D. P. Tilting Saturn. I. Analytic model. Astron. J. 128, 2501–2509 (2004).
Hersant, F., Gautier, D., Tobie, G. & Lunine, J. I. Interpretation of the carbon abundance in Saturn measured by Cassini. Planet. Space Sci. 56, 1103–1111 (2008).
Atreya, S. K. et al. Titan’s methane cycle. Planet. Space Sci. 54, 1177–1187 (2006).
Mousis, O., Choukroun, M., Lunine, J. I. & Sotin, C. Equilibrium composition between liquid and clathrate reservoirs on Titan. Icarus 239, 39–45 (2014).
Charnay, B., Forget, F., Tobie, G., Sotin, C. & Wordsworth, R. Titan’s past and future: 3D modeling of a pure nitrogen atmosphere and geological implications. Icarus 241, 269–279 (2014).
Pierrehumbert, R. T. The hydrologic cycle in deep-time climate problems. Nature 419, 191–198 (2002).
Tobie, G. et al. Evolution of Titan and implications for its hydrocarbon cycle. Philos. Trans. R. Soc. A 367, 617–631 (2009).
Burr, D. M. et al. Fluvial features on Titan: insights from morphology and modeling. Geol. Soc. Am. Bull. 125, 299–321 (2013).
Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).
Lunine, J. I., Lorenz, R. D. & Hartmann, W. K. Some speculations on Titan’s past, present and future. Planet. Space Sci. 46, 1099–1107 (1998).
Kuiper, G. P. Titan: a satellite with an atmosphere. Astrophys. J. 100, 378–383 (1944).
Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).
Acknowledgements
A.G.H. acknowledges the support of NASA Cassini Data Analysis Program grant NNX15AH10G and NASA Early Career Fellowship grant NNX14AJ57G. R.D.L. acknowledges the support of NASA Outer Planets Research grant NNX13AK97G. J.I.L. is forever thankful to the Cassini Project for long-term fiscal ministrations. We also thank J. M. Lora for helpful insights and discussions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hayes, A.G., Lorenz, R.D. & Lunine, J.I. A post-Cassini view of Titan’s methane-based hydrologic cycle. Nature Geosci 11, 306–313 (2018). https://doi.org/10.1038/s41561-018-0103-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-018-0103-y
This article is cited by
-
Enceladus and Titan: emerging worlds of the Solar System
Experimental Astronomy (2022)
-
Science goals and new mission concepts for future exploration of Titan’s atmosphere, geology and habitability: titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON)
Experimental Astronomy (2022)
-
A global geomorphologic map of Saturn’s moon Titan
Nature Astronomy (2019)
-
Deep and methane-rich lakes on Titan
Nature Astronomy (2019)
-
Normal modes and resonance in Ontario Lacus: a hydrocarbon lake of Titan
Ocean Dynamics (2019)