Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient cooling of rocky planets by intrusive magmatism

Abstract

The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Effect of extrusion efficiency and partitioning of HPEs on several averaged quantities over the last 500 Myr of evolution.
Fig. 2: Surface heat loss, behaviour and internal state of a planet/moon in a plutonic squishy lid regime versus in a heat-pipe regime.
Fig. 3: Regime diagram of the tectonic regimes discussed in this work.

References

  1. Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge Univ. Press, Cambridge, 2001).

  2. Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, Cambridge, 2014).

  3. Ruiz, J. et al. The thermal evolution of Mars as constrained by paleo-heat flows. Icarus 215, 508–517 (2011).

    Article  Google Scholar 

  4. Warren, P. H. & Rasmussen, K. L. Megaregolith insulation, internal temperatures, and bulk uranium content of the moon. J. Geophys. Res. Solid Earth 92, 3453–3465 (1987).

    Article  Google Scholar 

  5. Veeder, G. J., Matson, D. L., Johnson, T. V., Davies, A. G. & Blaney, D. L. The polar contribution to the heat flow of Io. Icarus 169, 264–270 (2004).

    Article  Google Scholar 

  6. Peale, S. J., Cassen, P. & Reynolds, R. T. Melting of Io by tidal dissipation. Science 203, 892–894 (1979).

    Article  Google Scholar 

  7. O'Reilly, T. C. & Davies, G. F. Magma transport of heat on Io: a mechanism allowing a thick lithosphere. Geophys. Res. Lett. 8, 313–316 (1981).

    Article  Google Scholar 

  8. Breuer, D. & Moore, W. B. in Treatise on Geophysics (ed. Schubert, G.) 299–348 (Elsevier, Oxford, 2007).

  9. Moore, W. B. & Webb, A. A. G. Heat-pipe Earth. Nature 501, 501–505 (2013).

    Article  Google Scholar 

  10. Gerya, T. Introduction to Numerical Geodynamic Modelling (Cambridge Univ. Press, Cambridge, 2010).

  11. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  Google Scholar 

  12. Ogawa, M. Effects of chemical fractionation of heat-producing elements on mantle evolution inferred from a numerical-model of coupled magmatism mantle convection system. Phys. Earth Planet. Inter. 83, 101–127 (1994).

    Article  Google Scholar 

  13. Xie, S. & Tackley, P. J. Evolution of U-Pb and Sm-Nd systems in numerical models of mantle convection and plate tectonics. J. Geophys. Res. Planets 109, B11204 (2004).

    Article  Google Scholar 

  14. Nakagawa, T. & Tackley, P. J. Deep mantle heat flow and thermal evolution of the Earth's core in thermochemical multiphase models of mantle convection. Geochem. Geophys. Geosyst. 6, Q08003 (2005).

    Article  Google Scholar 

  15. Kite, E. S., Manga, M. & Gaidos, E. Geodynamics and rate of volcanism on massive Earth-like planets. Astrophys. J. 700, 1732–1749 (2009).

    Article  Google Scholar 

  16. Ogawa, M. A positive feedback between magmatism and mantle upwelling in terrestrial planets: implications for the Moon. J. Geophys. Res. Planets 119, 2317–2330 (2014).

    Article  Google Scholar 

  17. Lourenço, D. L., Rozel, A. & Tackley, P. J. Melting-induced crustal production helps plate tectonics on Earth-like planets. Earth Planet. Sci. Lett. 439, 18–28 (2016).

    Article  Google Scholar 

  18. Armann, M. & Tackley, P. J. Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: two-dimensional models. J. Geophys. Res. Planets 117, E12003 (2012).

    Article  Google Scholar 

  19. Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).

    Article  Google Scholar 

  20. Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. The continental record and the generation of continental crust. Bull. Geol. Soc. Am. 125, 14–32 (2013).

    Article  Google Scholar 

  21. Gerya, T. V. Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. Earth Planet. Sci. Lett. 391, 183–192 (2014).

    Article  Google Scholar 

  22. Stofan, E. R., Smrekar, S. E., Tapper, S. W., Guest, J. E. & Grindrod, P. M. Preliminary analysis of an expanded corona database for Venus. Geophys. Res. Lett. 28, 4267–4270 (2001).

    Article  Google Scholar 

  23. Glaze, L. S., Stofan, E. R., Smrekar, S. E. & Baloga, S. M. Insights into corona formation through statistical analyses. J. Geophys. Res. Planets 107, 18–12 (2002).

    Google Scholar 

  24. Krassilnikov, A. S. & Head, J. W. Novae on Venus: geology, classification, and evolution. J. Geophys. Res. Planets 108, 5108 (2003).

    Article  Google Scholar 

  25. Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J. & Gerya, T. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017).

    Article  Google Scholar 

  26. Tackley, P. J. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Phys. Earth Planet. Inter. 171, 7–18 (2008).

    Article  Google Scholar 

  27. Hernlund, J. W. & Tackley, P. J. Modeling mantle convection in the spherical annulus. Phys. Earth Planet. Inter. 171, 48–54 (2008).

    Article  Google Scholar 

  28. Kaufmann, G. & Lambeck, K. Mantle dynamics, postglacial rebound and the radial viscosity profile. Phys. Earth Planet. Inter. 121, 301–324 (2000).

    Article  Google Scholar 

  29. Mitrovica, J. X. & Forte, A. M. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett. 225, 177–189 (2004).

    Article  Google Scholar 

  30. Sleep, N. H. Segregation of magma from a mostly crystalline Mush. Bull. Geol. Soc. Am. 85, 1225–1232 (1974).

    Article  Google Scholar 

  31. McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).

    Article  Google Scholar 

  32. Fowler, A. C. A mathematical model of magma transport in the asthenosphere. Geophys. Astrophys. Fluid Dyn. 33, 63–96 (1985).

    Article  Google Scholar 

  33. Scott, D. R. & Stevenson, D. J. Magma ascent by porous flow. J. Geophys. Res. Solid Earth 91, 9283–9296 (1986).

    Article  Google Scholar 

  34. Bercovici, D., Ricard, Y. & Schubert, G. A two-phase model for compaction and damage: 1. general theory. J. Geophys. Res. Solid Earth 106, 8887–8906 (2001).

    Article  Google Scholar 

  35. Keller, T., May, D. A. & Kaus, B. J. P. Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophys. J. Int. 195, 1406–1442 (2013).

    Article  Google Scholar 

  36. O’Neill, C., Moresi, L. & Lenardic, A. Insulation and depletion due to thickened crust: effects on melt production on Mars and Earth. Geophys. Res. Lett. 32, L14304 (2005).

  37. Cooper, C. M., Lenardic, A. & Moresi, L. Effects of continental insulation and the partitioning of heat producing elements on the Earth’s heat loss. Geophys. Res. Lett. 33, 4741 (2006).

    Google Scholar 

  38. Deschamps, F., Cobden, L. & Tackley, P. J. The primitive nature of large low shear-wave velocity provinces. Earth Planet. Sci. Lett. 349, 198–208 (2012).

    Article  Google Scholar 

  39. Gerya, T. V. & Burg, J.-P. Intrusion of ultramafic magmatic bodies into the continental crust: Numerical simulation. Phys. Earth Planet. Inter. 160, 124–142 (2007).

    Article  Google Scholar 

  40. Wood, B. J. & Blundy, J. D. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 395–424 (Elsevier, Oxford, 2003).

  41. Lenardic, A. in Archean Geodynamics and Environments Vol. 164 (eds Benn, K. et al.) 33–45 (American Geophysical Union, 2006).

  42. van Hunen, J. & van den Berg, A. P. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103, 217–235 (2008).

    Article  Google Scholar 

  43. Christensen, U. R. Thermal evolution models for the Earth. J. Geophys. Res. Solid Earth 90, 2995–3007 (1985).

    Article  Google Scholar 

  44. Valencia, D., O’Connell, R. J. & Sasselov, D. D. Inevitability of plate tectonics on super-Earths. Astrophys. J. 670, L45–L48 (2007).

    Article  Google Scholar 

  45. SteinC.., FinnenkötterA.., LowmanJ. P.. & HansenU.. The pressure-weakening effect in super-Earths: consequences of a decrease in lower mantle viscosity on surface dynamics. Geophys. Res. Lett. 38, L21201 (2011).

    Article  Google Scholar 

  46. van Heck, H. J. & Tackley, P. J. Plate tectonics on super-Earths: equally or more likely than on Earth. Earth Planet. Sci. Lett. 310, 252–261 (2011).

    Article  Google Scholar 

  47. Tackley, P. J., Ammann, M., Brodholt, J. P., Dobson, D. P. & Valencia, D. Mantle dynamics in super-Earths: post-perovskite rheology and self-regulation of viscosity. Icarus 225, 50–61 (2013).

    Article  Google Scholar 

  48. Dorn, C. et al. Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron. Astrophys. 577, A83 (2015).

    Article  Google Scholar 

  49. Balay, S., Brown, J., Buschelman, K. & Eijkhout, V. PETSc Users Manual Revision 3.3 (Argonne National Laboratory, 2012).

  50. Buffett, B. A., Huppert, H. E., Lister, J. R. & Woods, A. W. Analytical model for solidification of the Earth’s core. Nature 356, 329–331 (1992).

    Article  Google Scholar 

  51. Buffett, B. A., Huppert, H. E., Lister, J. R. & Woods, A. W. On the thermal evolution of the Earth’s core. J. Geophys. Res. Solid Earth 101, 7989–8006 (1996).

    Article  Google Scholar 

  52. Nakagawa, T. & Tackley, P. J. Effects of thermo-chemical mantle convection on the thermal evolution of the Earth’s core. Earth Planet. Sci. Lett. 220, 107–119 (2004).

    Article  Google Scholar 

  53. Irifune, T. & Ringwood, A. E. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet. Sci. Lett. 117, 101–110 (1993).

    Article  Google Scholar 

  54. Ono, S., Ito, E. & Katsura, T. Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet. Sci. Lett. 190, 57–63 (2001).

    Article  Google Scholar 

  55. Nakagawa, T. & Tackley, P. J. Influence of magmatism on mantle cooling, surface heat flow and Urey ratio. Earth Planet. Sci. Lett. 329-330, 1–10 (2012).

    Article  Google Scholar 

  56. Herzberg, C., Raterron, P. & Zhang, J. New experimental observations on the anhydrous solidus for peridotite KLB-1. Geochem. Geophys. Geosyst., https://doi.org/10.1029/2000GC000089 (2000).

  57. Zerr, A., Diegeler, A. & Boehler, R. Solidus of Earth’s deep mantle. Science 281, 243–246 (1998).

    Article  Google Scholar 

  58. Condomines, M., Hemond, C. & Allegre, C. J. U-Th-Ra radioactive disequilibria and magmatic processes. Earth Planet. Sci. Lett. 90, 243–262 (1988).

    Article  Google Scholar 

  59. Vogt, K., Gerya, T. V. & Castro, A. Crustal growth at active continental margins: numerical modeling. Phys. Earth Planet. Inter. 192-193, 1–20 (2012).

    Article  Google Scholar 

  60. Karato, S. I. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).

    Article  Google Scholar 

  61. Yamazaki, D. & Karato, S.-I. Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am. Mineral. 86, 385–391 (2001).

    Article  Google Scholar 

  62. Čížková, H., van den Berg, A. P., Spakman, W. & Matyska, C. The viscosity of Earth’s lower mantle inferred from sinking speed of subducted lithosphere. Phys. Earth Planet. Inter. 200–201, 56–62 (2012).

    Google Scholar 

  63. Ammann, M. W., Brodhot, J. P., Wookey, J. & Dobson, D. P. First-principles constraints on diffusion in lower-mantle minerals and a weak D˝ layer. Nature 465, 462–465 (2010).

    Article  Google Scholar 

  64. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  65. Abe, Y. in Evolution of the Earth and Planets Vol. 74 (eds Takahashi, E. et al.) 41–54 (American Geophysical Union, 1993).

  66. Arzi, A. A. Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173–184 (1978).

    Article  Google Scholar 

  67. Costa, A., Caricchi, L. & Bagdassarov, N. A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem. Geophys. Geosyst. 10, Q03010 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Püsök, G. Golabek and S. Labrosse for reading an earlier version of the manuscript. D.L.L. was supported by ETH Zurich grant ETH-46 12-1. A.B.R. and P.J.T. received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 320639 project iGEO. T.G. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements no. 642029-ITN CREEP and no. 674899 SUBITOP.

Author information

Authors and Affiliations

Authors

Contributions

D.L.L., A.B.R and T.G. designed the set of numerical simulations. P.J.T. implemented the eruption–intrusion routines on the convection code and initiated this general research direction. D.L.L. wrote the post-processing routines. D.L.L. and A.B.R. produced the figures. All authors contributed to the manuscript.

Corresponding author

Correspondence to Diogo L. Lourenço.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lourenço, D.L., Rozel, A.B., Gerya, T. et al. Efficient cooling of rocky planets by intrusive magmatism. Nature Geosci 11, 322–327 (2018). https://doi.org/10.1038/s41561-018-0094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0094-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing