Perspective

The geological and climatological case for a warmer and wetter early Mars

  • Nature Geosciencevolume 11pages230237 (2018)
  • doi:10.1038/s41561-018-0093-9
  • Download Citation
Received:
Accepted:
Published:

Abstract

The climate of early Mars remains a topic of intense debate. Ancient terrains preserve landscapes consistent with stream channels, lake basins and possibly even oceans, and thus the presence of liquid water flowing on the Martian surface 4 billion years ago. However, despite the geological evidence, determining how long climatic conditions supporting liquid water lasted remains uncertain. Climate models have struggled to generate sufficiently warm surface conditions given the faint young Sun—even assuming a denser early atmosphere. A warm climate could have potentially been sustained by supplementing atmospheric CO2 and H2O warming with either secondary greenhouse gases or clouds. Alternatively, the Martian climate could have been predominantly cold and icy, with transient warming episodes triggered by meteoritic impacts, volcanic eruptions, methane bursts or limit cycles. Here, we argue that a warm and semi-arid climate capable of producing rain is most consistent with the geological and climatological evidence.

  • Subscribe to Nature Geoscience for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015).

  2. 2.

    Spanovich, N. et al. Surface and near-surface atmospheric temperatures for the Mars Exploration Rover landing sites. Icarus 180, 314–320 (2006).

  3. 3.

    Craddock, R. A. & Howard, A. D. The case for rainfall on a warm, wet early Mars. J. Geophys. Res. 107, 5111 (2002).

  4. 4.

    Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).

  5. 5.

    Howard, A. D., Moore, J. M. & Irwin III, R. P. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110, E12S14 (2005).

  6. 6.

    Irwin III, R. P., Craddock, R. A., Howard, A. D. & Flemming, H. L. Topographic influences on development of Martian valley networks. J. Geophys. Res. 116, E02005 (2011).

  7. 7.

    Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. & Schneeberger, D. M. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98, 11,061–11,078 (1993).

  8. 8.

    Di Achille, G. & Hynek, B. M. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3, 459–463 (2010).

  9. 9.

    Villanueva, G. L. et al. Strong water isotopic anomalies in the Martian atmosphere: probing current and ancient reservoirs. Science 348, 218–221 (2015).

  10. 10.

    Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).

  11. 11.

    Carter, J., Poulet, F., Bibring, J. P., Mangold, N. & Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. 118, 831–858 (2013).

  12. 12.

    Howard, A. D. Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing. Geomorphology 91, 332–363 (2007).

  13. 13.

    Matsubara, Y., Howard, A. D. & Gochenour, J. P. Hydrology of early Mars: valley network incision. J. Geophys. Res. 118, 1365–1387 (2013).

  14. 14.

    Irwin, R. P. & Howard, A. D. Drainage basin evolution in Noachian Terra Cimmeria, Mars. J. Geophys. Res. https://doi.org/10.1029/2001JE001818 (2002).

  15. 15.

    Hynek, B. M., Beach, M. & Hoke, M. R. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115, (2010).

  16. 16.

    Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).

  17. 17.

    Walker, J. C. Carbon dioxide on the early Earth. Orig. Life Evol. Biospheres 16, 117–127 (1985).

  18. 18.

    Tian, F., Kasting, J. F. & Solomon, S. C. Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36, L02205 (2009).

  19. 19.

    Connerney, J. E. P. et al. Tectonic implications of Mars crustal magnetism. Proc. Natl Acad. Sci. USA 102, 14970–14975 (2005).

  20. 20.

    Grott, M. et al. Long-term evolution of the Martian crust-mantle system. Space Sci. Rev. 174, 49–111 (2013).

  21. 21.

    Tian, F. et al. Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Sci. Planet. Lett. 295, 412–418 (2010).

  22. 22.

    Forget, F. et al. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

  23. 23.

    Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2014).

  24. 24.

    Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

  25. 25.

    Kasting, J. F. CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991).

  26. 26.

    Wordsworth, R. et al. Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

  27. 27.

    Forget, F. & Pierrehumbert, R. T. Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997).

  28. 28.

    Mischna, M. A., Kasting, J. F., Pavlov, A. & Freedman, R. Influence of carbon dioxide clouds on early Martian climate. Icarus 145, 546–554 (2000).

  29. 29.

    Colaprete, A. & Toon, O. B. Carbon dioxide clouds in an early dense Martian atmosphere. J. Geophys. Res. 108, 5025 (2003).

  30. 30.

    Postawko, S. E. & Kuhn, W. R. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate. J. Geophys. Res. Solid Earth 91, 431–438 (1986).

  31. 31.

    Mischna, M. A., Baker, V., Milliken, R., Richardson, M. & Lee, C. Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J. Geophys. Res. 118, 560–576 (2013).

  32. 32.

    Halevy, I. & Head III, J. W. Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7, 865–868 (2014).

  33. 33.

    Kerber, L., Forget, F. & Wordsworth, R. Sulfur in the early Martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261, 133–148 (2015).

  34. 34.

    Segura, A. & Navarro-González, R. Production of low molecular weight hydrocarbons by volcanic eruptions on early Mars. Orig. Life Evol. Biospheres 35, 477–487 (2005).

  35. 35.

    Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).

  36. 36.

    Batalha, N., Domagal-Goldman, S. D., Ramirez, R. & Kasting, J. F. Testing the early Mars H2–CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258, 337–349 (2015).

  37. 37.

    Ramirez, R. M. A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297, 71–82 (2017).

  38. 38.

    Kite, E. S., Williams, J. P., Lucas, A. & Aharonson, O. Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nat. Geosci. 7, 335–339 (2014).

  39. 39.

    Hu, R., Kass, D. M., Ehlmann, B. L. & Yung, Y. L. Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Commun. 6, 10003 (2015).

  40. 40.

    Grott, M., Morschhauser, A., Breuer, D. & Hauber, E. Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011).

  41. 41.

    Tuff, J., Wade, J. & Wood, B. J. Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 498, 342–345 (2013).

  42. 42.

    Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

  43. 43.

    Wetzel, D. T., Rutherford, M. J., Jacobsen, S. D., Hauri, E. H. & Saal, A. E. Degassing of reduced carbon from planetary basalts. Proc. Natl Acad. Sci. USA 110, 8010–8013 (2013).

  44. 44.

    Segura, T. L., Toon, O. B., Colaprete, A. & Zahnle, K. Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002).

  45. 45.

    Segura, T. L., Toon, O. B. & Colaprete, A. Modeling the environmental effects of moderate‐sized impacts on Mars. J. Geophys. Res. 113, E11007 (2008).

  46. 46.

    Segura, T. L., McKay, C. P. & Toon, O. B. An impact-induced, stable, runaway climate on Mars. Icarus 220, 144–148 (2012).

  47. 47.

    Urata, R. A. & Toon, O. B. Simulations of the martian hydrologic cycle with a general circulation model: implications for the ancient martian climate. Icarus 226, 229–250 (2013).

  48. 48.

    Chassefière, E. et al. CO2–SO2 clathrate hydrate formation on early Mars. Icarus 223, 878 (2013).

  49. 49.

    Schmidt, F. et al. Early Mars volcanic sulfur storage in the upper cryosphere and formation of transient SO2-rich atmospheres during the Hesperian. Meteorit. Planet. Sci. 51, 2226–2233 (2016).

  50. 50.

    Werner, S. C. The early martian evolution—constraints from basin formation ages. Icarus 195, 45–60 (2008).

  51. 51.

    Golombek, M. P. et al. Erosion rates at the Mars Exploration Rover landing sites and long‐term climate change on Mars. J. Geophys. Res. 111, E12S10 (2006).

  52. 52.

    Ramirez, R. M. & Kasting, J. F. Could cirrus clouds have warmed early Mars? Icarus 281, 248–261 (2017).

  53. 53.

    Toon, O. B., Segura, T. & Zahnle, K. The formation of martian river valleys by impacts. Ann. Rev. Earth Planet. Sci. 38, 303–322 (2010).

  54. 54.

    Craddock, R. A., Maxwell, T. A. & Howard, A. D. Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars. J. Geophys. Res. 102, 13321–13340 (1997).

  55. 55.

    Chassefière, E., Langlais, B., Quesnel, Y. & Leblanc, F. The fate of early Mars’ lost water: the role of serpentinization. J. Geophys. Res. 118, 1123–1134 (2013).

  56. 56.

    Chassefière, E., Lasue, J., Langlais, B. & Quesnel, Y. Early Mars serpentinization‐derived CH4 reservoirs, H2‐induced warming and paleopressure evolution. Meteorit. Planet. Sci. 51, 2234–2245 (2016).

  57. 57.

    Kite, E. S. et al. Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars. Nat. Geosci. 737, 737–740 (2017).

  58. 58.

    Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350, aac7575 (2015).

  59. 59.

    Hoke, M. R., Hynek, B. M. & Tucker, G. E. Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312, 1–12 (2011).

  60. 60.

    Rosenberg, E. N. & Head III, J. W. Late Noachian fluvial erosion on Mars: cumulative water volumes required to carve the valley networks and grain size of bed-sediment. Planet. Space Sci. 117, 429–435 (2015).

  61. 61.

    Barnhart, C. J., Howard, A. D. & Moore, J. M. Long‐term precipitation and late‐stage valley network formation: landform simulations of Parana Basin, Mars. J. Geophys. Res. 114, E01003 (2009).

  62. 62.

    Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).

  63. 63.

    Brakenridge, G. R., Newsom, H. E. & Baker, V. R. Ancient hot springs on Mars: origins and paleoenvironmental significance of small Martian valleys. Geology 13, 859–862 (1985).

  64. 64.

    Squyres, S. & Kasting, J. F. Early Mars. Science 265, 744–749 (1994).

  65. 65.

    Gulick, V. C. Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res. 103, 19365–19387 (1998).

  66. 66.

    Luo, W., Cang, X. & Howard, A. D. New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nat. Commun. 8, 15766 (2017).

  67. 67.

    Kite, E. S., Halevy, I., Kahre, M. A., Wolff, M. J. & Manga, M. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223, 181–210 (2013).

  68. 68.

    Lamb, M. P. et al. Can springs cut canyons into rock? J. Geophys. Res. 111, E07002 (2006).

  69. 69.

    Chapman, C. R. & Jones, K. L. Cratering and obliteration history of Mars. Annu. Rev. Earth Planet. Sci. 5, 515–540 (1977).

  70. 70.

    Davis, J. M., Balme, M., Grindrod, P. M., Williams, R. M. E. & Gupta, S. Extensive Noachian fluvial systems in Arabia Terra: implications for early Martian climate. Geology 44, 847–850 (2016).

  71. 71.

    Hynek, B. Research focus: the great climate paradox of ancient Mars. Geology 44, 879–880 (2016).

  72. 72.

    Burr, D. M., Williams, R. M., Wendell, K. D., Chojnacki, M. & Emery, J. P. Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: formation mechanism and initial paleodischarge estimates. J. Geophys. Res. 115, E07011 (2010).

  73. 73.

    Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3‐D climate model. J. Geophys. Res. 120, 1201–1219 (2015).

  74. 74.

    Grant, J. A. Valley formation in Margaritifer Sinus, Mars, by precipitation-recharged ground-water sapping. Geology 28, 223–226 (2000).

  75. 75.

    Luo, W. Hypsometric analysis of Margaritifer Sinus and origin of valley networks. J. Geophys. Res. 107, 5071 (2002).

  76. 76.

    Kreslavsky, M. A. & Head III, J. W. Mars: nature and evolution of young latitude‐dependent water‐ice‐rich mantle. Geophys. Res. Lett. https://doi.org/10.1029/2002GL015392 (2002).

  77. 77.

    Batalha, N. E., Kopparapu, R. K., Haqq-Misra, J. & Kasting, J. F. Climate cycling on early Mars caused by the carbonate–silicate cycle. Earth Planet. Sci. Lett. 455, 7–13 (2016).

  78. 78.

    Zolotov, M. Y. & Mironenko, M. V. Chemical models for Martian weathering profiles: insights into formation of layered phyllosilicate and sulfate deposits. Icarus 275, 203–220 (2016).

  79. 79.

    Craddock, R. A. & Lorenz, R. D. The changing nature of rainfall during the early history of Mars. Icarus 293, 172–179 (2017).

  80. 80.

    Houston, J. Variability of precipitation in the Atacama Desert: its causes and hydrological impact. Int. J. Climatol. 26, 2181–2198 (2006).

  81. 81.

    Hoke, M. R. & Hynek, B. M. Roaming zones of precipitation on ancient Mars as recorded in valley networks. J. Geophys. Res. 114, E08002 (2009).

  82. 82.

    Bishop, J. L. et al. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars. Nat. Astron. 2, 206–213 (2018).

  83. 83.

    Kahn, R. The evolution of CO2 on Mars. Icarus 62, 175–190 (1985).

  84. 84.

    Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A. & Little, B. Mineralogical biosignatures and the search for life on Mars. Astrobiology 1, 447–465 (2001).

  85. 85.

    Lammer, H. et al. Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013).

  86. 86.

    McSween, H. Y. What we have learned about Mars from SNC meteorites. Meteoritics 26, 757–779 (1994).

  87. 87.

    Booth, M. C. & Kieffer, H. H. Carbonate formation in Marslike environments. J. Geophys. Res. 83, 1809–1815 (1978).

  88. 88.

    Clark, R. N. & Hoefen, T. M. Spectral feature mapping with Mars Global Surveyor thermal emission spectra: mineralogic implications. In Bullet. Am. Astron. Soc. Vol. 32, 1118 (AAS, Pasadena, 2000).

  89. 89.

    Soderblom, L. A. The composition and mineralogy of the Martian surface from spectroscopy observations - 0.3 microns to 50 microns. In Mars (eds Kieffer, H. H. et al.) 557–593 (Univ. Arizona Press, Tucson, 1992).

  90. 90.

    Goudge, T. A., Head, J. W., Mustard, J. F. & Fassett, C. I. An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219, 211–229 (2012).

  91. 91.

    Carter, J., Loizeau, D., Mangold, N., Poulet, F. & Bibring, J. P. Widespread surface weathering on early Mars: a case for a warmer and wetter climate. Icarus 248, 373–382 (2015).

  92. 92.

    Ramanathan, V. L. R. D., Cess, R. D., Harrison, E. F., Minnis, P. & Barkstrom, B. R. Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243, 57 (1989).

Download references

Acknowledgements

R.M.R. wishes to thank J. F. Kasting for lively discussions about limit cycles and transient warming episodes. R.M.R. acknowledges support from the Simons Foundation (SCOL # 290357, Kaltenegger), Carl Sagan Institute, Cornell Center for Astrophysics and Planetary Science, and the Earth-Life Science Institute. R.A.C. acknowledges support from NASA grant 80NSSC17K0454 and a grant from the Smithsonian’s Universe Consortium.

Author information

Affiliations

  1. Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan

    • Ramses M. Ramirez
  2. Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA

    • Robert A. Craddock

Authors

  1. Search for Ramses M. Ramirez in:

  2. Search for Robert A. Craddock in:

Contributions

R.M.R conceived idea, wrote and edited much of the main text and Supplementary Information and created the figures. R.A.C. defined the initial conditions of the geologic environment before valley network formation (early–mid Noachian) and co-wrote and co-edited the main text and Supplementary Information. Both authors discussed and analysed the results and implications.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Ramses M. Ramirez.

Supplementary information

  1. Supplementary Information

    Supplementary Discussion and Figures