Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The geological and climatological case for a warmer and wetter early Mars

Abstract

The climate of early Mars remains a topic of intense debate. Ancient terrains preserve landscapes consistent with stream channels, lake basins and possibly even oceans, and thus the presence of liquid water flowing on the Martian surface 4 billion years ago. However, despite the geological evidence, determining how long climatic conditions supporting liquid water lasted remains uncertain. Climate models have struggled to generate sufficiently warm surface conditions given the faint young Sun—even assuming a denser early atmosphere. A warm climate could have potentially been sustained by supplementing atmospheric CO2 and H2O warming with either secondary greenhouse gases or clouds. Alternatively, the Martian climate could have been predominantly cold and icy, with transient warming episodes triggered by meteoritic impacts, volcanic eruptions, methane bursts or limit cycles. Here, we argue that a warm and semi-arid climate capable of producing rain is most consistent with the geological and climatological evidence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geomorphic evidence for water on ancient Mars compared to Earth.
Fig. 2: Martian valley networks.
Fig. 3: A schematic of the geologic evolution of Mars with time.
Fig. 4: Illustration of simplified energy balance for Mars.

Similar content being viewed by others

References

  1. Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015).

    Article  Google Scholar 

  2. Spanovich, N. et al. Surface and near-surface atmospheric temperatures for the Mars Exploration Rover landing sites. Icarus 180, 314–320 (2006).

    Article  Google Scholar 

  3. Craddock, R. A. & Howard, A. D. The case for rainfall on a warm, wet early Mars. J. Geophys. Res. 107, 5111 (2002).

    Article  Google Scholar 

  4. Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).

    Article  Google Scholar 

  5. Howard, A. D., Moore, J. M. & Irwin III, R. P. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110, E12S14 (2005).

    Article  Google Scholar 

  6. Irwin III, R. P., Craddock, R. A., Howard, A. D. & Flemming, H. L. Topographic influences on development of Martian valley networks. J. Geophys. Res. 116, E02005 (2011).

    Google Scholar 

  7. Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. & Schneeberger, D. M. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98, 11,061–11,078 (1993).

    Article  Google Scholar 

  8. Di Achille, G. & Hynek, B. M. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3, 459–463 (2010).

    Article  Google Scholar 

  9. Villanueva, G. L. et al. Strong water isotopic anomalies in the Martian atmosphere: probing current and ancient reservoirs. Science 348, 218–221 (2015).

    Article  Google Scholar 

  10. Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).

    Article  Google Scholar 

  11. Carter, J., Poulet, F., Bibring, J. P., Mangold, N. & Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. 118, 831–858 (2013).

    Article  Google Scholar 

  12. Howard, A. D. Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing. Geomorphology 91, 332–363 (2007).

    Article  Google Scholar 

  13. Matsubara, Y., Howard, A. D. & Gochenour, J. P. Hydrology of early Mars: valley network incision. J. Geophys. Res. 118, 1365–1387 (2013).

    Article  Google Scholar 

  14. Irwin, R. P. & Howard, A. D. Drainage basin evolution in Noachian Terra Cimmeria, Mars. J. Geophys. Res. https://doi.org/10.1029/2001JE001818 (2002).

  15. Hynek, B. M., Beach, M. & Hoke, M. R. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115, (2010).

  16. Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).

    Article  Google Scholar 

  17. Walker, J. C. Carbon dioxide on the early Earth. Orig. Life Evol. Biospheres 16, 117–127 (1985).

    Article  Google Scholar 

  18. Tian, F., Kasting, J. F. & Solomon, S. C. Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36, L02205 (2009).

  19. Connerney, J. E. P. et al. Tectonic implications of Mars crustal magnetism. Proc. Natl Acad. Sci. USA 102, 14970–14975 (2005).

    Article  Google Scholar 

  20. Grott, M. et al. Long-term evolution of the Martian crust-mantle system. Space Sci. Rev. 174, 49–111 (2013).

    Article  Google Scholar 

  21. Tian, F. et al. Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Sci. Planet. Lett. 295, 412–418 (2010).

    Article  Google Scholar 

  22. Forget, F. et al. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

    Article  Google Scholar 

  23. Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2014).

    Article  Google Scholar 

  24. Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

    Article  Google Scholar 

  25. Kasting, J. F. CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991).

    Article  Google Scholar 

  26. Wordsworth, R. et al. Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

    Article  Google Scholar 

  27. Forget, F. & Pierrehumbert, R. T. Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997).

    Article  Google Scholar 

  28. Mischna, M. A., Kasting, J. F., Pavlov, A. & Freedman, R. Influence of carbon dioxide clouds on early Martian climate. Icarus 145, 546–554 (2000).

    Article  Google Scholar 

  29. Colaprete, A. & Toon, O. B. Carbon dioxide clouds in an early dense Martian atmosphere. J. Geophys. Res. 108, 5025 (2003).

    Article  Google Scholar 

  30. Postawko, S. E. & Kuhn, W. R. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate. J. Geophys. Res. Solid Earth 91, 431–438 (1986).

    Article  Google Scholar 

  31. Mischna, M. A., Baker, V., Milliken, R., Richardson, M. & Lee, C. Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J. Geophys. Res. 118, 560–576 (2013).

    Article  Google Scholar 

  32. Halevy, I. & Head III, J. W. Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7, 865–868 (2014).

    Article  Google Scholar 

  33. Kerber, L., Forget, F. & Wordsworth, R. Sulfur in the early Martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261, 133–148 (2015).

    Article  Google Scholar 

  34. Segura, A. & Navarro-González, R. Production of low molecular weight hydrocarbons by volcanic eruptions on early Mars. Orig. Life Evol. Biospheres 35, 477–487 (2005).

    Article  Google Scholar 

  35. Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).

    Article  Google Scholar 

  36. Batalha, N., Domagal-Goldman, S. D., Ramirez, R. & Kasting, J. F. Testing the early Mars H2–CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258, 337–349 (2015).

    Article  Google Scholar 

  37. Ramirez, R. M. A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297, 71–82 (2017).

    Article  Google Scholar 

  38. Kite, E. S., Williams, J. P., Lucas, A. & Aharonson, O. Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nat. Geosci. 7, 335–339 (2014).

    Article  Google Scholar 

  39. Hu, R., Kass, D. M., Ehlmann, B. L. & Yung, Y. L. Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Commun. 6, 10003 (2015).

    Article  Google Scholar 

  40. Grott, M., Morschhauser, A., Breuer, D. & Hauber, E. Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011).

    Article  Google Scholar 

  41. Tuff, J., Wade, J. & Wood, B. J. Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 498, 342–345 (2013).

    Article  Google Scholar 

  42. Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    Article  Google Scholar 

  43. Wetzel, D. T., Rutherford, M. J., Jacobsen, S. D., Hauri, E. H. & Saal, A. E. Degassing of reduced carbon from planetary basalts. Proc. Natl Acad. Sci. USA 110, 8010–8013 (2013).

    Article  Google Scholar 

  44. Segura, T. L., Toon, O. B., Colaprete, A. & Zahnle, K. Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002).

    Article  Google Scholar 

  45. Segura, T. L., Toon, O. B. & Colaprete, A. Modeling the environmental effects of moderate‐sized impacts on Mars. J. Geophys. Res. 113, E11007 (2008).

    Article  Google Scholar 

  46. Segura, T. L., McKay, C. P. & Toon, O. B. An impact-induced, stable, runaway climate on Mars. Icarus 220, 144–148 (2012).

    Article  Google Scholar 

  47. Urata, R. A. & Toon, O. B. Simulations of the martian hydrologic cycle with a general circulation model: implications for the ancient martian climate. Icarus 226, 229–250 (2013).

    Article  Google Scholar 

  48. Chassefière, E. et al. CO2–SO2 clathrate hydrate formation on early Mars. Icarus 223, 878 (2013).

    Article  Google Scholar 

  49. Schmidt, F. et al. Early Mars volcanic sulfur storage in the upper cryosphere and formation of transient SO2-rich atmospheres during the Hesperian. Meteorit. Planet. Sci. 51, 2226–2233 (2016).

    Article  Google Scholar 

  50. Werner, S. C. The early martian evolution—constraints from basin formation ages. Icarus 195, 45–60 (2008).

    Article  Google Scholar 

  51. Golombek, M. P. et al. Erosion rates at the Mars Exploration Rover landing sites and long‐term climate change on Mars. J. Geophys. Res. 111, E12S10 (2006).

    Google Scholar 

  52. Ramirez, R. M. & Kasting, J. F. Could cirrus clouds have warmed early Mars? Icarus 281, 248–261 (2017).

    Article  Google Scholar 

  53. Toon, O. B., Segura, T. & Zahnle, K. The formation of martian river valleys by impacts. Ann. Rev. Earth Planet. Sci. 38, 303–322 (2010).

    Article  Google Scholar 

  54. Craddock, R. A., Maxwell, T. A. & Howard, A. D. Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars. J. Geophys. Res. 102, 13321–13340 (1997).

    Article  Google Scholar 

  55. Chassefière, E., Langlais, B., Quesnel, Y. & Leblanc, F. The fate of early Mars’ lost water: the role of serpentinization. J. Geophys. Res. 118, 1123–1134 (2013).

    Article  Google Scholar 

  56. Chassefière, E., Lasue, J., Langlais, B. & Quesnel, Y. Early Mars serpentinization‐derived CH4 reservoirs, H2‐induced warming and paleopressure evolution. Meteorit. Planet. Sci. 51, 2234–2245 (2016).

    Article  Google Scholar 

  57. Kite, E. S. et al. Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars. Nat. Geosci. 737, 737–740 (2017).

    Article  Google Scholar 

  58. Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350, aac7575 (2015).

    Article  Google Scholar 

  59. Hoke, M. R., Hynek, B. M. & Tucker, G. E. Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312, 1–12 (2011).

    Article  Google Scholar 

  60. Rosenberg, E. N. & Head III, J. W. Late Noachian fluvial erosion on Mars: cumulative water volumes required to carve the valley networks and grain size of bed-sediment. Planet. Space Sci. 117, 429–435 (2015).

    Article  Google Scholar 

  61. Barnhart, C. J., Howard, A. D. & Moore, J. M. Long‐term precipitation and late‐stage valley network formation: landform simulations of Parana Basin, Mars. J. Geophys. Res. 114, E01003 (2009).

    Google Scholar 

  62. Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).

    Article  Google Scholar 

  63. Brakenridge, G. R., Newsom, H. E. & Baker, V. R. Ancient hot springs on Mars: origins and paleoenvironmental significance of small Martian valleys. Geology 13, 859–862 (1985).

    Article  Google Scholar 

  64. Squyres, S. & Kasting, J. F. Early Mars. Science 265, 744–749 (1994).

    Article  Google Scholar 

  65. Gulick, V. C. Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res. 103, 19365–19387 (1998).

    Article  Google Scholar 

  66. Luo, W., Cang, X. & Howard, A. D. New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nat. Commun. 8, 15766 (2017).

    Article  Google Scholar 

  67. Kite, E. S., Halevy, I., Kahre, M. A., Wolff, M. J. & Manga, M. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223, 181–210 (2013).

    Article  Google Scholar 

  68. Lamb, M. P. et al. Can springs cut canyons into rock? J. Geophys. Res. 111, E07002 (2006).

    Google Scholar 

  69. Chapman, C. R. & Jones, K. L. Cratering and obliteration history of Mars. Annu. Rev. Earth Planet. Sci. 5, 515–540 (1977).

    Article  Google Scholar 

  70. Davis, J. M., Balme, M., Grindrod, P. M., Williams, R. M. E. & Gupta, S. Extensive Noachian fluvial systems in Arabia Terra: implications for early Martian climate. Geology 44, 847–850 (2016).

    Article  Google Scholar 

  71. Hynek, B. Research focus: the great climate paradox of ancient Mars. Geology 44, 879–880 (2016).

    Article  Google Scholar 

  72. Burr, D. M., Williams, R. M., Wendell, K. D., Chojnacki, M. & Emery, J. P. Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: formation mechanism and initial paleodischarge estimates. J. Geophys. Res. 115, E07011 (2010).

    Article  Google Scholar 

  73. Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3‐D climate model. J. Geophys. Res. 120, 1201–1219 (2015).

    Article  Google Scholar 

  74. Grant, J. A. Valley formation in Margaritifer Sinus, Mars, by precipitation-recharged ground-water sapping. Geology 28, 223–226 (2000).

    Article  Google Scholar 

  75. Luo, W. Hypsometric analysis of Margaritifer Sinus and origin of valley networks. J. Geophys. Res. 107, 5071 (2002).

    Article  Google Scholar 

  76. Kreslavsky, M. A. & Head III, J. W. Mars: nature and evolution of young latitude‐dependent water‐ice‐rich mantle. Geophys. Res. Lett. https://doi.org/10.1029/2002GL015392 (2002).

  77. Batalha, N. E., Kopparapu, R. K., Haqq-Misra, J. & Kasting, J. F. Climate cycling on early Mars caused by the carbonate–silicate cycle. Earth Planet. Sci. Lett. 455, 7–13 (2016).

    Article  Google Scholar 

  78. Zolotov, M. Y. & Mironenko, M. V. Chemical models for Martian weathering profiles: insights into formation of layered phyllosilicate and sulfate deposits. Icarus 275, 203–220 (2016).

    Article  Google Scholar 

  79. Craddock, R. A. & Lorenz, R. D. The changing nature of rainfall during the early history of Mars. Icarus 293, 172–179 (2017).

    Article  Google Scholar 

  80. Houston, J. Variability of precipitation in the Atacama Desert: its causes and hydrological impact. Int. J. Climatol. 26, 2181–2198 (2006).

    Article  Google Scholar 

  81. Hoke, M. R. & Hynek, B. M. Roaming zones of precipitation on ancient Mars as recorded in valley networks. J. Geophys. Res. 114, E08002 (2009).

    Article  Google Scholar 

  82. Bishop, J. L. et al. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars. Nat. Astron. 2, 206–213 (2018).

    Article  Google Scholar 

  83. Kahn, R. The evolution of CO2 on Mars. Icarus 62, 175–190 (1985).

    Article  Google Scholar 

  84. Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A. & Little, B. Mineralogical biosignatures and the search for life on Mars. Astrobiology 1, 447–465 (2001).

    Article  Google Scholar 

  85. Lammer, H. et al. Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013).

    Article  Google Scholar 

  86. McSween, H. Y. What we have learned about Mars from SNC meteorites. Meteoritics 26, 757–779 (1994).

    Article  Google Scholar 

  87. Booth, M. C. & Kieffer, H. H. Carbonate formation in Marslike environments. J. Geophys. Res. 83, 1809–1815 (1978).

    Article  Google Scholar 

  88. Clark, R. N. & Hoefen, T. M. Spectral feature mapping with Mars Global Surveyor thermal emission spectra: mineralogic implications. In Bullet. Am. Astron. Soc. Vol. 32, 1118 (AAS, Pasadena, 2000).

  89. Soderblom, L. A. The composition and mineralogy of the Martian surface from spectroscopy observations - 0.3 microns to 50 microns. In Mars (eds Kieffer, H. H. et al.) 557–593 (Univ. Arizona Press, Tucson, 1992).

  90. Goudge, T. A., Head, J. W., Mustard, J. F. & Fassett, C. I. An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219, 211–229 (2012).

    Article  Google Scholar 

  91. Carter, J., Loizeau, D., Mangold, N., Poulet, F. & Bibring, J. P. Widespread surface weathering on early Mars: a case for a warmer and wetter climate. Icarus 248, 373–382 (2015).

    Article  Google Scholar 

  92. Ramanathan, V. L. R. D., Cess, R. D., Harrison, E. F., Minnis, P. & Barkstrom, B. R. Cloud-radiative forcing and climate: results from the earth radiation budget experiment. Science 243, 57 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

R.M.R. wishes to thank J. F. Kasting for lively discussions about limit cycles and transient warming episodes. R.M.R. acknowledges support from the Simons Foundation (SCOL # 290357, Kaltenegger), Carl Sagan Institute, Cornell Center for Astrophysics and Planetary Science, and the Earth-Life Science Institute. R.A.C. acknowledges support from NASA grant 80NSSC17K0454 and a grant from the Smithsonian’s Universe Consortium.

Author information

Authors and Affiliations

Authors

Contributions

R.M.R conceived idea, wrote and edited much of the main text and Supplementary Information and created the figures. R.A.C. defined the initial conditions of the geologic environment before valley network formation (early–mid Noachian) and co-wrote and co-edited the main text and Supplementary Information. Both authors discussed and analysed the results and implications.

Corresponding author

Correspondence to Ramses M. Ramirez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez, R.M., Craddock, R.A. The geological and climatological case for a warmer and wetter early Mars. Nature Geosci 11, 230–237 (2018). https://doi.org/10.1038/s41561-018-0093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0093-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing