Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Repeated drainage from megathrusts during episodic slow slip


Pore-fluid pressure levels are considered to regulate the frictional strength and slip behaviour at megathrusts, where the largest earthquakes on Earth occur. Some analyses have suggested that the breaking of permeability seals during megathrust earthquakes causes subsequent drainage from the megathrust. However, it is poorly understood whether drainage follows frequent occurrences of episodic slow slip events. Here we analyse seismic waveform data beneath Kanto, Japan, for the period from 2004 to 2015 and show that seismicity rates and seismic attenuation above the megathrust of the Philippine Sea slab change cyclically in response to accelerated slow slip. These observations are interpreted to represent intensive drainage during slow slip events that repeat at intervals of approximately one year and subsequent migration of fluids into the permeable overlying plate. Our observations suggest that if slow slip events occur under an impermeable overlying plate, fluids draining due to slow slip events could be forced to channel within the megathrust, potentially enhancing pore-fluid pressure at an up-dip, locked seismogenic megathrust. This process might increase the potential to trigger large earthquakes near slow slip areas. Although stress transfer is recognized as an important factor for triggering megathrust failure, fluid transfer accompanied by episodic slow slip events will thus play an additional and crucial part in megathrust weakening.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Analysed seismicity.
Fig. 2: Correlation between supraslab earthquakes and megathrust slip rates.
Fig. 3: Temporal variation in P-wave attenuation, Qp1.
Fig. 4: Schematic interpretation of drainage process.


  1. 1.

    Lay, T., Kanamori, H. & Ruff, L. J. The asperity model and the nature of large subduction zone earthquakes. Earthq. Predict. Res. 1, 3–71 (1982).

    Google Scholar 

  2. 2.

    Obara, K., Hirose, H., Yamamizu, F. & Kasahara, K. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31, L23602 (2004).

    Article  Google Scholar 

  3. 3.

    Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300, 1942–1943 (2003).

    Article  Google Scholar 

  4. 4.

    Wallace, L. M. & Eberhart-Phillips, D. Newly observed, deep slow slip events at the central Hikurangi margin, New Zealand: implications for downdip variability of slow slip and tremor, and relationship to seismic structure. Geophys. Res. Lett. 40, 5393–5398 (2013).

    Article  Google Scholar 

  5. 5.

    Peng, Z. & Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 3, 599–607 (2010).

    Article  Google Scholar 

  6. 6.

    Obara, K. & Kato, A. Connecting slowearthquakes to huge earthquakes. Science 353, 253–257 (2016).

    Article  Google Scholar 

  7. 7.

    Kato, A. et al. Propagation of slow slip leading up to the 2011 M w 9.0 Tohoku-Oki earthquake. Science 335, 705–708 (2012).

    Article  Google Scholar 

  8. 8.

    Uchida, N., Iinuma, T., Nadeau, R. M., Bürgmann, R. & Hino, R. Periodic slow slip triggers megathrust zone earthquakes in northeastern Japan. Science 351, 488–492 (2016).

    Article  Google Scholar 

  9. 9.

    Husen, S. & Kissling, E. Postseismic fluid flow after the large subduction earthquake of Antofagasta, Chile. Geology 29, 847–850 (2002).

    Article  Google Scholar 

  10. 10.

    Nakajima, J., Yoshida, K. & Hasegawa, A. An intraslab seismic sequence activated by the 2011 Tohoku-oki earthquake: evidence for fluid-related embrittlement. J. Geophys. Res. Solid Earth 118, 3492–3505 (2013).

    Article  Google Scholar 

  11. 11.

    Nippress, S. E. J. & Rietbrock, A. Seismogenic zone high permeability in the Central Andes inferred from relocations of micro-earthquakes. Earth Planet. Sci. Lett. 263, 235–245 (2007).

    Article  Google Scholar 

  12. 12.

    Sibson, R. H. Stress switching in subduction forearcs: implications for overpressure containment and strength cycling on megathrusts. Tectonophysics 600, 142–152 (2013).

    Article  Google Scholar 

  13. 13.

    Sano, Y. et al. Helium anomalies suggest a fluid pathway from mantle to trench during the 2011 Tohoku-Oki earthquake. Nat. Commun. 5, 3084 (2014).

    Article  Google Scholar 

  14. 14.

    Seno, T. Determination of the pore fluid pressure ratio at seismogenic megathrusts in subduction zones: implications for strength of asperities and Andean-type mountain building. J. Geophys. Res. 114, B05405 (2009).

    Article  Google Scholar 

  15. 15.

    Kitajima, H. & Saffer, D. M. Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust. Geophys. Res. Lett. 39, L23301 (2012).

    Article  Google Scholar 

  16. 16.

    Uchida, N., Asano, Y. & Hasegawa, A. Acceleration of regional plate subduction beneath Kanto, Japan, after the 2011 Tohoku-oki earthquake. Geophys. Res. Lett. 43, 9002–9008 (2016).

    Article  Google Scholar 

  17. 17.

    Waldhauser, F. & Ellsworth, W. L. A double-difference earthquake location algorithm: method and application to the Northern Hayward Fault, California. Bull. Seismol. Soc. Am. 90, 1353–1368 (2000).

    Article  Google Scholar 

  18. 18.

    Ueno, H., Hatakeyama, S., Aketagawa, T., Funasaki, J. & Hamada, N. Improvement of hypocenter determination procedures in the Japan Meteorological Agency (in Japanese with English abstract). Q. J. Seismol. 65, 123–134 (2002).

    Google Scholar 

  19. 19.

    Nakajima, J., Hirose, F. & Hasegawa, A. Seismotectonics beneath the Tokyo metropolitan area, Japan: effect of slab-slab contact and overlap on seismicity. J. Geophys. Res. 114, B08309 (2009).

    Article  Google Scholar 

  20. 20.

    Toda, S., Stein, R. S. & Lin, J. Widespread seismicity excitation throughout central Japan following the 2011 M = 9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer. Geophys. Res. Lett. 38, L00G03 (2011).

    Article  Google Scholar 

  21. 21.

    Sakai, S. & Hirata, N. Distribution of the Metropolitan Seismic Observation network (in Japanese with English abstract). Bull. Earthq. Res. Inst. Tokyo Univ. 84, 57–69 (2009).

    Google Scholar 

  22. 22.

    Farla, R. J. M., Jackson, I., Fitz Gerald, J. D., Faul, U. H. & Zimmerman, M. E. Dislocation damping and anisotropic seismic wave attenuation in Earth’s upper mantle. Science 336, 332–335 (2012).

    Article  Google Scholar 

  23. 23.

    Hyndman, R. D., Yamano, M. & Oleskevich, D. A. The seismogenic zone of subduction thrust faults. Island Arc 6, 244–260 (1997).

    Article  Google Scholar 

  24. 24.

    Gurevich, B., Makarynska, D., de Paula, O. B. & Pervukhina, M. A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics 75, N109–N120 (2010).

    Article  Google Scholar 

  25. 25.

    Müller, T. M., Gurevich, B. & Lebedev, M. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—a review. Geophysics 75, 75A147–75A164 (2010).

    Article  Google Scholar 

  26. 26.

    Hyndman, R. D. & Peacock, S. M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417–432 (2003).

    Article  Google Scholar 

  27. 27.

    Chen, K. H., Nadeau, R. M. & Rau, R. J. Towards a universal rule on the recurrence interval scaling of repeating earthquakes? Geophys. Res. Lett. 34, L16308 (2007).

    Google Scholar 

  28. 28.

    Nakajima, J. & Hasegawa, A. Tremor activity inhibited by well-drained conditions above a megathrust. Nat. Commun. 7, 13863 (2016).

    Article  Google Scholar 

  29. 29.

    Boyarko, D. C. & Brudzinski, M. R. Spatial and temporal patterns of nonvolcanic tremor along the southern Cascadia subduction zone. J. Geophys. Res. 115, B00A22 (2010).

    Article  Google Scholar 

  30. 30.

    Townend, J. & Zoback, M. D. How faulting keeps the crust strong. Geology 28, 399–402 (2000).

    Article  Google Scholar 

  31. 31.

    Koerner, A., Kissling, E. & Miller, S. A. A model of deep crustal fluid flow following the Mw = 8.0 Antofagasta, Chile, earthquake. J. Geophys. Res. 109, B06307 (2004).

    Article  Google Scholar 

  32. 32.

    Yoshida, K. et al. Stress before and after the 2011 great Tohoku-oki earthquake and induced earthquakes in inland areas of eastern Japan. Geophys. Res. Lett. 39, L03302 (2012).

    Google Scholar 

  33. 33.

    Wells, R. E., Blakely, R. J., Wech, A. G., McCrory, P. A. & Michael, A. Cascadia subduction tremor muted by crustal faults. Geology 45, 515–518 (2017).

    Article  Google Scholar 

  34. 34.

    Segall, P. & Bradley, A. M. Slow-slip evolves into megathrust earthquakes in 2D numerical simulations. Geophys. Res. Lett. 39, L18308 (2012).

    Article  Google Scholar 

  35. 35.

    Gibbs, J., Healy, J., Raleigh, C. & Coakley, J. Seismicity in the Rangely, Colorado, area: 1962–1970. Bull. Seismol. Soc. Am. 63, 1557–1570 (1973).

    Google Scholar 

  36. 36.

    Kim, W. Y. Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. J. Geophys. Res. Solid Earth 118, 3506–3518 (2013).

    Article  Google Scholar 

  37. 37.

    Rivet, D. et al. Seismic velocity changes associated with aseismic deformations of a fault stimulated by fluid injection. Geophys. Res. Lett. 43, 9563–9572 (2016).

    Article  Google Scholar 

  38. 38.

    Nadeau, R. M. & Johnson, L. R. Seismological studies at Parkfield VI: moment release rates and estimates of source parameters for small repeating earthquakes. Bull. Seismol. Soc. Am. 88, 790–814 (1998).

    Google Scholar 

  39. 39.

    Uchida, N. & Matsuzawa, T. Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture. Earth Planet. Sci. Lett. 374, 81–91 (2013).

    Article  Google Scholar 

  40. 40.

    Press, W. H. et al. Numerical Recipes in Fortran 77. The Art of Scientific Computing (Cambridge Univ. Press, New York, NY, 1992).

  41. 41.

    Scherbaum, F. Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra. J. Geophys. Res. 95, 12423 (1990).

    Article  Google Scholar 

  42. 42.

    Brune, J. N. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75, 4997 (1970).

    Article  Google Scholar 

  43. 43.

    Nakajima, J. et al. Seismic attenuation beneath northeastern Japan: constraints on mantle dynamics and arc magmatism. J. Geophys. Res. Solid Earth 118, 5838–5855 (2013).

    Article  Google Scholar 

  44. 44.

    Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A 241, 376–396 (1957).

    Article  Google Scholar 

  45. 45.

    Sato, T. & Hirasawa, T. Body wave spectra from propagating shear cracks. J. Phys. Earth 21, 415–431 (1973).

    Article  Google Scholar 

Download references


We used the hypocentre catalogue unified by the Japan Meteorological Agency and waveform data recorded at MeSO-net stations. S. Sakai and Y. Asano provided us with the MeSO-net waveform data. We thank A. Hasegawa and Y. Takei for discussions. This study was supported by the Earthquake Research Institute cooperative research programme (2017-D-21) and JSPS KAKENHI (grant numbers JP15K05260, JP16H04040, JP16H06475, JP16H06473, JP17K05626 and JP17H05309).

Author information




J.N. performed the waveform analysis, and N.U. estimated the slip rates of the megathrust using small repeating earthquakes. Both J.N. and N.U. designed this study and contributed to the interpretation of the data and preparation of the manuscript.

Corresponding author

Correspondence to Junichi Nakajima.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakajima, J., Uchida, N. Repeated drainage from megathrusts during episodic slow slip. Nature Geosci 11, 351–356 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing