Chilean megathrust earthquake recurrence linked to frictional contrast at depth

Abstract

Fundamental processes of the seismic cycle in subduction zones, including those controlling the recurrence and size of great earthquakes, are still poorly understood. Here, by studying the 2016 earthquake in southern Chile—the first large event within the rupture zone of the 1960 earthquake (moment magnitude (Mw) = 9.5)—we show that the frictional zonation of the plate interface fault at depth mechanically controls the timing of more frequent, moderate-size deep events (Mw < 8) and less frequent, tsunamigenic great shallow earthquakes (Mw > 8.5). We model the evolution of stress build-up for a seismogenic zone with heterogeneous friction to examine the link between the 2016 and 1960 earthquakes. Our results suggest that the deeper segments of the seismogenic megathrust are weaker and interseismically loaded by a more strongly coupled, shallower asperity. Deeper segments fail earlier (~60 yr recurrence), producing moderate-size events that precede the failure of the shallower region, which fails in a great earthquake (recurrence >110 yr). We interpret the contrasting frictional strength and lag time between deeper and shallower earthquakes to be controlled by variations in pore fluid pressure. Our integrated analysis strengthens understanding of the mechanics and timing of great megathrust earthquakes, and therefore could aid in the seismic hazard assessment of other subduction zones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The 1960 and 2016 earthquakes.
Fig. 2: Downdip segmentation of the seismogenic zone.
Fig. 3: Stress build-up pattern around a clamped shallow asperity.
Fig. 4: Effective friction coefficient and pore pressure ratios.
Fig. 5: Schematic conceptual model of the frictional loading across the plate interface.

References

  1. 1.

    Bürgmann, R. et al. Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J. Geophys. Res. 110, B07405 (2005).

    Article  Google Scholar 

  2. 2.

    Chlieh, M., Avouac, J., Sieh, K., Natawidjaja, D. & Galetzka, J. Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. J. Geophys. Res. 113, B05305 (2008).

    Article  Google Scholar 

  3. 3.

    Perfettini, H. et al. Seismic and aseismic slip on the Central Peru megathrust. Nature 465, 78–81 (2010).

    Article  Google Scholar 

  4. 4.

    Moreno, M., Rosenau, M. & Oncken, O. Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467, 198–202 (2010).

    Article  Google Scholar 

  5. 5.

    Loveless, J. P. & Meade, B. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 M w =9.0 Tohoku-oki earthquake. Geophys. Res. Lett. 38, L17306 (2011).

    Article  Google Scholar 

  6. 6.

    Kaneko, Y., Avouac, J. & Lapusta, N. Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nat. Geosci. 3, 363–369 (2010).

    Article  Google Scholar 

  7. 7.

    Wang, K. & Bilek, S. Do subducting seamounts generate or stop large earthquakes? Geology 39, 819–822 (2011).

    Article  Google Scholar 

  8. 8.

    Kopp, H. Invited review paper: the control of subduction zone structural complexity and geometry on margin segmentation and seismicity. Tectonophysics 589, 1–16 (2013).

    Article  Google Scholar 

  9. 9.

    Ruff, L. Do trench sediments affect great earthquake occurrence in subduction zones? PAGEOPH 129, 263–282 (1989).

    Article  Google Scholar 

  10. 10.

    Saffer, D. M. & Tobin, H. J. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39, 157–186 (2011).

    Article  Google Scholar 

  11. 11.

    Audet, P. & Schwartz, S. Hydrologic control of forearc strength and seismicity in the Costa Rican subduction zone. Nat. Geosci. 6, 852–855 (2013).

    Article  Google Scholar 

  12. 12.

    Moreno, M. et al. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake. Nat. Geosci. 7, 292–296 (2014).

    Article  Google Scholar 

  13. 13.

    Saffer, D. M. Mapping fluids to subduction megathrust locking and slip behavior. Geophys. Res. Lett. 44, 9337–9340 (2017).

    Article  Google Scholar 

  14. 14.

    Song, T. R. A. & Simons, M. Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301, 630–633 (2003).

    Article  Google Scholar 

  15. 15.

    Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W. & Dinterman, P. A. Basin-centred asperities in great subduction zone earthquakes: a link between slip, subsidence, and subduction erosion. J. Geophys. Res. 108, 2507–2537 (2003).

    Google Scholar 

  16. 16.

    Bassett, D., Sandwell, D., Fialko, Y. & Watts, A. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake. Nature 531, 92–96 (2016).

    Article  Google Scholar 

  17. 17.

    Angiboust, S. et al. Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface. Geochem. Geophys. Geosyst. 16, 1905–1922 (2015).

    Article  Google Scholar 

  18. 18.

    Gao, X. & Wang, K. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature 543, 416–419 (2017).

    Article  Google Scholar 

  19. 19.

    Ruiz, S. et al. Reawakening of large earthquakes in south central Chile: the 2016 M w 7.6 Chiloé‚ event. Geophys. Res. Lett. 44, 6633–6640 (2017).

    Article  Google Scholar 

  20. 20.

    Plafker, G. & Savage, J. Mechanism of the Chilean earthquake of May 21 and 22, 1960. Geol. Soc. Am. Bull. 81, 1001–1030 (1970).

    Article  Google Scholar 

  21. 21.

    Barrientos, S. & Ward, S. The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophys. J. Int 103, 589–598 (1990).

    Article  Google Scholar 

  22. 22.

    Barrientos, S. Slip distribution of the 1985 Central Chile earthquake. Tectonophysics 145, 225–241 (1988).

    Article  Google Scholar 

  23. 23.

    Pritchard, M. E. et al. Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes. J. Geophys. Res. 112, B03307 (2007).

    Article  Google Scholar 

  24. 24.

    Motagh, M. et al. Subduction earthquake deformation associated with 14 November 2007, M w 7.8 Tocopilla earthquake in Chile: results from InSAR and aftershocks. Tectonophysics 490, 66–68 (2010).

    Article  Google Scholar 

  25. 25.

    Schurr, B. et al. The 2007 M7.7 Tocopilla northern Chile earthquake sequence: Implications for along-strike and downdip rupture segmentation and megathrust frictional behavior. J. Geophys. Res. 117, B05305 (2012).

    Article  Google Scholar 

  26. 26.

    Lay, T. et al. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. 117, B04311 (2012).

    Article  Google Scholar 

  27. 27.

    Allen, T., Marano, K., Earle, P. & Wald, D. PAGER-CAT: a composite earthquake catalog for calibrating global fatality models. Seismol. Res. Lett. 80, 57–62 (2009).

    Article  Google Scholar 

  28. 28.

    Moreno, M. et al. Heterogeneous plate locking in the South-Central Chile subduction zone: building up the next great earthquake. Earth Planet. Sci. Lett. 305, 413–424 (2011).

    Article  Google Scholar 

  29. 29.

    Moreno, M. S., Bolte, J., Klotz, J. & Melnick, D. Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophys. Res. Lett. 36, L16310 (2009).

    Article  Google Scholar 

  30. 30.

    Lange, D. et al. Seismicity and geometry of the south Chilean subduction zone (41.5°S-43.5°S): Implications for controlling parameters. Geophys. Res. Lett. 34, L06311 (2007).

    Article  Google Scholar 

  31. 31.

    Völker, D., Grevemeyer, I., Stipp, M., Wang, K. & He, J. Thermal control of the seismogenic zone of southern central Chile. J. Geophys. Res. 116, B10305 (2011).

    Article  Google Scholar 

  32. 32.

    Bassett, D. & Watts, A. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. seafloor roughness and subducting relief. Geochem. Geophys. Geosyst. 16, 1508–1540 (2015).

    Article  Google Scholar 

  33. 33.

    Fuller, C., Willett, S. & Brandon, M. Formation of forearc basins and their influence on subduction zone earthquakes. Geology 34, 65–68 (2006).

    Article  Google Scholar 

  34. 34.

    Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Article  Google Scholar 

  35. 35.

    Kanda, R. & Simons, M. An elastic plate model for interseismic deformation in subduction zones. J. Geophys. Res. 115, B03405 (2010).

    Article  Google Scholar 

  36. 36.

    Perfettini, H. & Ampuero, J. P. Dynamics of a velocity strengthening fault region: Implications for slow earthquakes and postseismic slip. J. Geophys. Res. 113, B09411 (2008).

    Article  Google Scholar 

  37. 37.

    Rice, J., Sammis, C. & Parsons, R. Off-fault secondary failure induced by a dynamic slip pulse. Bull. Seismol. Soc. Am. 96, 109–134 (1995).

    Google Scholar 

  38. 38.

    Hetland, E. A. & Simons, M. Post-seismic and interseismic fault creep ii: transient creep and interseismic stress shadows on megathrusts. Geophys. J. Int. 181, 99–112 (2010).

    Article  Google Scholar 

  39. 39.

    Hasegawa, A., Yoshida, K. & Okada, T. Nearly complete stress drop in the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake. Earth Planet. Sp. 63, 35 (2011).

    Google Scholar 

  40. 40.

    Gao, X. & Wang, K. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science 345, 1038–1041 (2014).

    Article  Google Scholar 

  41. 41.

    Cisternas, M. et al. Predecessors of the giant 1960 Chile earthquake. Nature 437, 404–407 (2005).

    Article  Google Scholar 

  42. 42.

    K. Hubbert, M. & Rubey, W. Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Bull. Seismol. Soc. Am. 70, 115–166 (1959).

    Article  Google Scholar 

  43. 43.

    Bachmann, R. et al. Exposed plate interface in the European Alps reveals fabric styles and gradients related to an ancient seismogenic coupling zone. J. Geophys. Res. 114, B05402 (2009).

    Article  Google Scholar 

  44. 44.

    Glodny, J. et al. Differential Late Paleozoic active margin evolution in south-central Chile (37-40°S) - the Lanalhue Fault Zone. J. South Am. Earth Sci. 26, 397–4110 (2008).

    Article  Google Scholar 

  45. 45.

    Groß, K., Micksch, U. & Group, T. R. The reflection seismic survey of project TIPTEQ-the inventory of the Chilean subduction zone at 38.2°S. Geophys. J. Int. 172, 565–571 (2007).

    Article  Google Scholar 

  46. 46.

    Melnick, M. Rise of the central Andean coast by earthquakes straddling the Moho. Nat. Geosci. 9, 401–407 (2016).

    Article  Google Scholar 

  47. 47.

    Deng, Z., Gendt, G. & Schöne, T. in IAG 150 Years Vol. 143 (eds Rizos, C. & Willis, P.) 33–40 (Springer, Cham, 2015).

  48. 48.

    Metzger, S. et al. Present kinematics of the Tjörnes Fracture Zone, North Iceland, from campaign and continuous GPS measurements. Geophys. J. Int. 192, 441–455 (2013).

    Article  Google Scholar 

  49. 49.

    Bevis, M. & Brown, A. Trajectory models and reference frames for crustal motion geodesy. J. Geod. 88, 283–311 (2014).

    Article  Google Scholar 

  50. 50.

    Geirsson, H. et al. Current plate movements across the Mid-Atlantic Ridge determined from 5 years of continuous GPS measurements in Iceland. J. Geophys. Res. 111, B09407 (2006).

    Article  Google Scholar 

  51. 51.

    Wegmuller, U. & Werner, C. Gamma SAR processor and interferometry software. In 3rd ERS Symp. Space Serv. Environ. (eds Guyenne, T. D. & Danesy, D.) 1687–1692 (ESA, Noordwijk, 1997).

  52. 52.

    Scheiber, R. & Moreira, A. Coregistration of interferometric SAR images using spectral diversity. IEEE Trans. Geosci. Remote Sens. 38, 2179–2191 (2000).

    Article  Google Scholar 

  53. 53.

    Guarnieri, A. & Prati, C. Scansar focusing and interferometry. IEEE Trans. Geosci. Remote Sens. 34, 1029–1038 (1996).

    Article  Google Scholar 

  54. 54.

    Farr, T. & Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans. Am. Geophys. 81, 583–585 (2000).

    Article  Google Scholar 

  55. 55.

    Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 36, 813–821 (1998).

    Article  Google Scholar 

  56. 56.

    Jónsson, S., Zebker, H., Segall, P. & Amelung, F. Fault slip distribution of the 1999 M w 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Seismol. Soc. Am. Bull. 92, 1377–1389 (2002).

    Article  Google Scholar 

  57. 57.

    Sudhaus, H. & J¢nsson, S. Improved source modelling through combined use of InSAR and GPS under consideration of correlated data errors: application to the June 2000 Kleifarvatn earthquake, Iceland. Geophys. J. Int. 176, 389–404 (2009).

    Article  Google Scholar 

  58. 58.

    Tassara, A. & Echaurren, A. Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys. J. Int. 189, 161–168 (2012).

    Article  Google Scholar 

  59. 59.

    Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 82, 1018–1040 (1992).

    Google Scholar 

  60. 60.

    Cavalie, O. et al. Slow slip event in the Mexican subduction zone: evidence of shallower slip in the Guerrero seismic gap for the 2006 event revealed by the joint inversion of InSAR and GPS data. Earth Planet. Sci. Lett. 367, 52–60 (2013).

    Article  Google Scholar 

  61. 61.

    Grant, M. C. & Boyd, S. P. in Recent Advances in Learning and Control (eds Blondel, V. et al.) 95–110 (Springer, London, 2008).

  62. 62.

    Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D. & Kradolfer, U. Initial reference models in local earthquake tomography. J. Geophys. Res. 99, 19635–19646 (1994).

    Article  Google Scholar 

  63. 63.

    Nabelek, J. & Xia, G. Moment-tensor analysis using regional data: application to the 25 March, 1993, Scotts Mills, Oregon, Earthquake. Geophys. Res. Lett. 22, 13–16 (1995).

    Article  Google Scholar 

  64. 64.

    Reichert, C., Schreckenberger, B. & SPOC Team. Fahrtbericht SONNE-Fahrt SO-161 Leg 2 and 3 SPOC -Subduktionsprozesse vor Chile- BMBF-Forschungsvorhaben 03G0161A Valparaiso 16.10.2001–Valparaiso 29.11.2001 (Bundesanst. für Geowis. und Rohstoffe, 2002).

  65. 65.

    Aagaard, B., Knepley, M. & Williams, C. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J. Geophys. Res. 118, 3059–3079 (2013).

    Article  Google Scholar 

  66. 66.

    Christensen, N. Poisson’s ratio and crustal seismology. J. Geophys. Res. 101, 3139–3156 (1996).

    Article  Google Scholar 

  67. 67.

    Li, S., Moreno, M., Rosenau, M., Melnick, D. & Oncken, O. Splay fault triggering by great subduction earthquakes inferred from finite element models. Geophys. Res. Lett. 41, 385–391 (2014).

    Article  Google Scholar 

  68. 68.

    King, G. P., Stein, R. & Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84, 935–953 (1994).

    Google Scholar 

  69. 69.

    Lamb, S. Shear stresses on megathrusts: Implications for mountain building behind subduction zones. J. Geophys. Res. 111, B07401 (2006).

    Google Scholar 

  70. 70.

    Gutknecht, B. D. et al. Structure and state of stress of the Chilean subduction zone from terrestrial and satellite-derived gravity and gravity gradient data. Surv. Geophys. 35, 1417–1440 (2014).

    Article  Google Scholar 

  71. 71.

    Tassara, A., Götze, H., Schmidt, S. & Hackney, R. Three-dimensional density model of the Nazca plate and the Andean continental margin. J. Geophys. Res. 111, B09404 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the German Science Foundation (DFG) grants MO3157/2-3 (M.M., J.R.B.) and SCHU2460/3-1 (C.S.), Millennium Scientific Initiative (ICM) grant NC160025 "CYCLO - the seismic cycle along subduction zones" (D.M., A.T.), Chilean National Commission for Scientific and Technological Research (CONICYT) grant PAI-MEC 2016 (M.M.), FONDECYT 1150321 (D.M.), and Helmholtz Graduate Research School GeoSim (S.L.). ALOS original data are copyright of the Japanese Aerospace Exploration Agency and provided under proposal 1161 (M.Mo.). This study was encouraged by discussions with B. Schurr and I. Urrutia. We thank Armada de Chile for hosting our cGPS stations GUAF (Faro Guafo) and MELK (Melinka).

Author information

Affiliations

Authors

Contributions

M.M. and S.L. conceived the original idea, which was elaborated with J.R.B., D.M. and O.O. M.M. and S.L performed all numerical simulations. J.R.B. performed the slip inversions. S.M., M.Mo. and S.V. processed the InSAR data. J.C.B. and Z.D. processed the GPS data. S.M. performed the time series analysis of GPS data. B.D.G. performed the stress anomaly model. C.S. processed the seismological data. E.C. performed the processing of seismic reflection data. D.M. installed cGPS stations. The manuscript was written by M.M. with comments from D.M., J.R.B., S.L., C.S., S.M., O.O., E.C. and A.T.

Corresponding author

Correspondence to M. Moreno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moreno, M., Li, S., Melnick, D. et al. Chilean megathrust earthquake recurrence linked to frictional contrast at depth. Nature Geosci 11, 285–290 (2018). https://doi.org/10.1038/s41561-018-0089-5

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing