Observationally derived rise in methane surface forcing mediated by water vapour trends

Abstract

Atmospheric methane (CH4) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH4 are expected to perturb the surface energy balance through radiative forcing, largely due to the infrared radiative absorption features of CH4. However, to date this has been determined strictly through radiative transfer calculations. Here, we present a quantified observation of the time series of clear-sky radiative forcing by CH4 at the surface from 2002 to 2012 at a single site derived from spectroscopic measurements along with line-by-line calculations using ancillary data. There was no significant trend in CH4 forcing between 2002 and 2006, but since then, the trend in forcing was 0.026 ± 0.006 (99.7% CI) W m2 yr−1. The seasonal-cycle amplitude and secular trends in observed forcing are influenced by a corresponding seasonal cycle and trend in atmospheric CH4. However, we find that we must account for the overlapping absorption effects of atmospheric water vapour (H2O) and CH4 to explain the observations fully. Thus, the determination of CH4 radiative forcing requires accurate observations of both the spatiotemporal distribution of CH4 and the vertically resolved trends in H2O.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Recent evolution of atmospheric methane at the surface study site.
Fig. 2: Factors affecting CH4 long-wave surface instantaneous radiative forcing.
Fig. 3: CH4 long-wave surface radiative forcing time series at SGP.
Fig. 4: Thermodynamic dependence of CH4 surface forcing.
Fig. 5: Forcing time-series decomposition and reconstruction from predictors.

References

  1. 1.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, Cambridge, 2013).

  2. 2.

    Dlugokencky, E. J., Nisbet, E. G., Fisher, R. & Lowry, D. Global atmospheric methane: budget, changes and dangers. Phil. Trans. R. Soc. Lond. Ser. A 369, 2058–2072 (2011).

    Article  Google Scholar 

  3. 3.

    Nisbet, E. G., Dlugokencky, E. J. & Bousquet, P. Methane on the rise—again. Science 343, 493–495 (2014).

    Article  Google Scholar 

  4. 4.

    Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

    Article  Google Scholar 

  5. 5.

    Aydin, M. et al. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature 476, 198–201 (2011).

    Article  Google Scholar 

  6. 6.

    Kai, F. M., Tyler, S. C., Randerson, J. T. & Blake, D. R. Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature 476, 194–197 (2011).

    Article  Google Scholar 

  7. 7.

    Schaefer, H. et al. A 21st century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science 352, 80–84 (2016).

    Article  Google Scholar 

  8. 8.

    Prather, M. J. & Holmes, C. D. Overexplaining or underexplaining methane’s role in climate change. Proc. Natl Acad. Sci. USA 114, 5324–5326 (2017).

    Article  Google Scholar 

  9. 9.

    Rigby, M. et al. Role of atmospheric oxidation in recent methane growth. Proc. Natl Acad. Sci. USA 114, 5373–5377 (2017).

    Article  Google Scholar 

  10. 10.

    Turner, A. J., Frankenberg, C., Wennberg, P. O. & Jacob, D. J. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proc. Natl Acad. Sci. USA 114, 5367–5372 (2017).

    Article  Google Scholar 

  11. 11.

    Bergamaschi, P. et al. Atmospheric CH4 in the first decade of the 21st century: inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J. Geophys. Res. 118, 7350–7369 (2013).

    Google Scholar 

  12. 12.

    Turner, A. J. et al. A large increase in U.S. methane emissions over the past decade inferred from satellite data and surface observations. Geophys. Res. Lett. 43, 2218–2224 (2016).

    Article  Google Scholar 

  13. 13.

    Miller, S. M. et al. Anthropogenic emissions of methane in the United States. Proc. Natl Acad. Sci. USA 110, 20018–20022 (2013).

    Article  Google Scholar 

  14. 14.

    Brandt, A. R. et al. Methane leaks from North American natural gas systems. Science 343, 733–735 (2014).

    Article  Google Scholar 

  15. 15.

    Harries, J. E., Brindley, H. E., Sagoo, P. J. & Bantges, R. J. Increases in greenhouse gas forcing inferred from outgoing longwave spectra of the Earth in 1970 and 1997. Nature 410, 355–357 (2001).

    Article  Google Scholar 

  16. 16.

    Griggs, J. A. & Harries, J. E. Comparison of spectrally resolved outgoing longwave radiation over the tropical Pacific between 1970 and 2003 using IRIS, IMG, and AIRS. J. Clim. 20, 3982–4001 (2007).

    Article  Google Scholar 

  17. 17.

    Myhre, G., Highwood, E. J., Shine, K. P. & Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715–2718 (1998).

    Article  Google Scholar 

  18. 18.

    Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).

    Article  Google Scholar 

  19. 19.

    Brown, L. R. et al. Methane line parameters in the HITRAN2012 database. J. Quant. Spectrosc. Rad. Trans. 130, 201–219 (2013).

    Article  Google Scholar 

  20. 20.

    Goody, R. M. & Yung, Y. L. (eds) in Atmospheric Radiation: Theoretical Basis Ch. 3 (Oxford Univ. Press, New York, 1989).

  21. 21.

    Rothman, L. S. et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Rad. Trans. 130, 4–50 (2013).

    Article  Google Scholar 

  22. 22.

    Kratz, D. P. The sensitivity of radiative transfer calculations to the changes in the HITRAN database from 1982 to 2004. J. Quant. Spectrosc. Rad. Trans. 109, 1060–1080 (2008).

    Article  Google Scholar 

  23. 23.

    Lu, P., Zhang, H. & Jing, X. The effects of different HITRAN versions on calculated long-wave radiation and uncertainty evaluation. Acta Meteor. Sin. 26, 389–398 (2012).

    Article  Google Scholar 

  24. 24.

    Delahaye, T. et al. Measurements of H2O broadening coefficients of infrared methane lines. J. Quant. Spectrosc. Rad. Trans. 173, 40–48 (2016).

    Article  Google Scholar 

  25. 25.

    Mlawer, E. J. et al. Development and recent evaluation of the MT_CKD model of continuum absorption. Phil. Trans. R. Soc. A 370, 2520–2556 (2012).

    Article  Google Scholar 

  26. 26.

    Turner, D. D. & Ellingson, R. G. The Atmospheric Radiation Measurement Program: The First 20 Years (Amer. Meteor. Soc., Boston, 2016).

  27. 27.

    Feldman, D. R. et al. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 519, 339–343 (2015).

    Article  Google Scholar 

  28. 28.

    Helmig, D. et al. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nat. Geosci. 9, 490–495 (2016).

    Article  Google Scholar 

  29. 29.

    Hausmann, P., Sussmann, R. & Smale, D. Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top-down estimate from ethane and methane column observations. Atmos. Chem. Phys. 16, 3227–3244 (2016).

    Article  Google Scholar 

  30. 30.

    Wild, M. et al. The global energy balance from a surface perspective. Clim. Dynam. 40, 3107–3134 (2013).

    Article  Google Scholar 

  31. 31.

    Wang, K. & Liang, S. Global atmospheric downward longwave radiation over land surface under all-sky conditions from 1973 to 2008. J. Geophys. Res. 114, D19101 (2009).

    Article  Google Scholar 

  32. 32.

    Stephens, G. L. et al. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 5, 691–696 (2012).

    Article  Google Scholar 

  33. 33.

    Xie, S. et al. Clouds and more: ARM climate modeling best estimate data. Bull. Am. Meteor. Soc. 91, 31–20 (2010).

    Article  Google Scholar 

  34. 34.

    Knuteson, R. O. et al. Atmospheric emitted radiance interferometer. Part I: Instrument design. J. Atmos. Ocean. Technol. 21, 1763–1776 (2004).

    Article  Google Scholar 

  35. 35.

    Biraud, S. C. et al. A multi-year record of airborne CO2 observations in the US Southern Great Plains. Atmos. Meas. Tech. 6, 751–763 (2013).

    Article  Google Scholar 

  36. 36.

    Huang, Y., Tan, X. & Xia, Y. Inhomogeneous radiative forcing of homogeneous greenhouse gases. J. Geophys. Res. 121, 2780–2789 (2016).

    Google Scholar 

  37. 37.

    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  Google Scholar 

  38. 38.

    Gero, P. J. & Turner, D. D. Long-term trends in downwelling spectral infrared radiance over the U.S. Southern Great Plains. J. Clim. 24, 4831–4843 (2011).

    Article  Google Scholar 

  39. 39.

    Willett, K. M. et al. HadISDH: an updateable land surface specific humidity product for climate monitoring. Clim. Past 9, 657–677 (2013).

    Article  Google Scholar 

  40. 40.

    Dai, A. Recent climatology, variability, and trends in global surface humidity. J. Clim. 19, 3589–3606 (2006).

    Article  Google Scholar 

  41. 41.

    Berry, D. I. & Kent, E. C. A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Am. Meteor. Soc. 90, 645–656 (2009).

    Article  Google Scholar 

  42. 42.

    Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W. & Dee, D. P. Low frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res. 115, D01110 (2010).

    Google Scholar 

  43. 43.

    Wentz, F. J., Ricciardulli, L., Hilburn, K. & Mears, C. How much more rain will global warming bring? Science 317, 233–235 (2007).

    Article  Google Scholar 

  44. 44.

    Anderson, G. P. et al. AFGL Atmospheric Constituent Profiles (0–120 km) AFGL-TR_86-0110 (AFGL, 1989).

  45. 45.

    Atmospheric Emitted Radiance Interferometer (AERICH1). 2000-01-01 to 2015-06-01, 36.605 N 97.485 W: Southern Great Plains (SGP) Central Facility, Lamont, OK, Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive (ARM Data Discovery, accessed 1 June 2016); https://doi.org/10.5439/1025143

  46. 46.

    ARM Best Estimate Data Products (ARMBEATM). 2002-01-01 to 2012-12-31, 36.605 N 97.485 W: Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Compiled by X. Chen and S. Xie. Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive (ARM Data Discovery, accessed 1 June 2015); https://doi.org/10.5439/1039931

  47. 47.

    Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).

    Article  Google Scholar 

  48. 48.

    Peters, W. et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl Acad. Sci. USA 104, 18925–18930 (2007).

    Article  Google Scholar 

  49. 49.

    Hall, B. D., Dutton, G. S. & Elkins, J. W. The NOAA nitrous oxide standard scale for atmospheric observations. J. Geophys. Res. Atmos. 112, D09305 (2007).

    Article  Google Scholar 

  50. 50.

    Clough, S. A. et al. Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Rad. Trans. 91, 233–244 (2005).

    Article  Google Scholar 

  51. 51.

    Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Rad. Trans. 110, 533–572 (2009).

    Article  Google Scholar 

  52. 52.

    Alvarado, M. J. et al. Impacts of updated spectroscopy on thermal infrared retrievals of methane evaluated with HIPPO data. Atmos. Meas. Tech. 8, 965–985 (2015).

    Article  Google Scholar 

  53. 53.

    Li, J. Gaussian quadrature and its application to infrared radiation. J. Atmos. Sci. 57, 753–765 (2000).

    Article  Google Scholar 

  54. 54.

    Turner, D. D., Knuteson, R. O., Revercomb, H. E., Lo, C. & Dedecker, R. G. Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis. J. Atmos. Ocean. Technol. 23, 1223–1238 (2006).

    Article  Google Scholar 

  55. 55.

    Wang, J. et al. Corrections of humidity measurement errors from the Vaisala RS80 Radiosonde – application to TOGA COARE data. J. Atmos. Ocean. Technol. 19, 981–1002 (2002).

    Article  Google Scholar 

  56. 56.

    Turner, D. D. et al. Dry bias and variability in Vaisala radiosondes: The ARM experience. J. Atmos. Ocean. Technol. 20, 117–132 (2003).

    Article  Google Scholar 

  57. 57.

    Weatherhead, E. C. et al. Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res. 103, 17149–17161 (1998).

    Article  Google Scholar 

  58. 58.

    Liu, X., et al. OMI ozone profile and tropospheric ozone and cross evaluations with chemical transport models, AGU Meeting of the Americas, A31A-22 (2013).

  59. 59.

    Kuhn, M. & Johnson, K. Regression Trees and Rule-Based Models in Applied Predictive Modeling (Springer, New York, 2013).

  60. 60.

    Shumway, R. H. & Stoffer, D. S. Time Series Analysis and Its Applications (Springer, New York, 2000).

  61. 61.

    Ivosev, G., Burton, L. & Bonner, R. Dimensionality reduction and visualization in principal component analysis. Anal. Chem. 80, 4933 (2008).

    Article  Google Scholar 

  62. 62.

    Frank, R. J., Davey, N. & Hunt, S. P. Time series prediction and neural networks. J. Intell. Robot. Syst. 31, 91–103 (2001).

    Article  Google Scholar 

  63. 63.

    Casella, G. & Berger, R. L. (eds) in Statistical Inference Ch. 7.2.2 (Duxbury Press, Ithaca, 2002).

  64. 64.

    Ravishanker, N. & Dey, D. A First Course in Linear Model Theory (Chapman and Hall/CRC, Boca Raton, 2002).

  65. 65.

    Casella, G. & Berger, R. L. (eds) in Statistical Inference Ch. 10.4 (Duxbury Press, Ithaca, 2002).

  66. 66.

    Gilks, W. R., Richardson, S. & Spiegelhalter, D. J. Markov Chain Monte Carlo in Practice (Chapman and Hall/CRC, Boca Raton, 1995).

  67. 67.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article  Google Scholar 

  68. 68.

    Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. Modeling global annual N2O and NO emissions from fertilized fields. Glob. Biogeochem. Cycles 16, 1080 (2002).

    Google Scholar 

  69. 69.

    Fulton, R. A., Breidenbach, J. P., Seo, D. J., Miller, D. A. & O’Bannon, T. The WSR-88D rainfall algorithm. Weather Forecast. 13, 377–395 (1998).

    Article  Google Scholar 

  70. 70.

    Thoning, K. W., Tans, P. P. & Komhyr, W. D. Atmospheric carbon-dioxide at Mauna Loa observatory. 2. Analysis of the NOAA GMCC data, 1974–1985. J. Geophys. Res. 94, 8459–8565 (1989).

    Article  Google Scholar 

  71. 71.

    McFarlane, S. A. ARM’s Progress on Improving Atmospheric Broadband Radiative Fluxes and Heating Rates (AMS, 2016); https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0046.1

  72. 72.

    Bruhwiler, L. M. et al. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 14, 8269–8293 (2014).

    Article  Google Scholar 

  73. 73.

    McFarlane, S., Shippert, T. and Mather, J. Radiatively Important Parameters Best Estimate (RIPBE): An ARM Value-Added Product DOE Technical Report SC-ARM/TR-097 (US Department of Energy, 2011).

  74. 74.

    Dlugokencky, E. J., Steele, L. P., Lang, P. M. & Masarie, K. A. The growth rate and distribution of atmospheric methane. J. Geophys. Res. 99, 17021–17043 (1994).

    Article  Google Scholar 

  75. 75.

    Knuteson, R. O. et al. Atmospheric emitted radiance interferometer. Part II: Instrument performance. J. Atmos. Ocean. Technol. 21, 1777–1789 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy (DOE) under contract no. DE-AC02-05CH11231 as part of their Atmospheric System Research (ASR) Program, the Atmospheric Radiation Measurement (ARM) Program, the Terrestrial Ecosystem Sciences (TES) Programs, and the ARM Aerial Facility (AAF). Resources of the National Energy Research Scientific Computing Center (NERSC) were used under the same contract. Work at LLNL was performed under the auspices of the US DOE by Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344. M. Alvarado, K. Cady-Pereira, L. Riihimaki, I. Simpson and P. Novelli also contributed. NOAA GMD provided flask CH4, C2H6 and N2O data.

Author information

Affiliations

Authors

Contributions

D.R.F. led the research, performed all calculations and wrote the manuscript; W.D.C. proposed the study concept, provided research guidance and conceived methods for isolating the CH4 signal; S.C.B. provided CH4 and N2O data and associated support; M.D.R. provided the statistical analysis; D.D.T. provided guidance on AERI instrument performance and research focus; P.J.G. helped interpret AERI data; J.T. analysed thermodynamic contributions to the observed forcing. D.H. provided C2H6 data and associated support; S.X. provided ARMBE data and associated support; E.J.M. and T.R.S. provided clear-sky error analysis; M.S.T. provided research feedback and guidance and served as the principal investigator of the grant supporting this research. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to D. R. Feldman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables and Figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feldman, D.R., Collins, W.D., Biraud, S.C. et al. Observationally derived rise in methane surface forcing mediated by water vapour trends. Nature Geosci 11, 238–243 (2018). https://doi.org/10.1038/s41561-018-0085-9

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing