Article | Published:

Accretion mode of oceanic ridges governed by axial mechanical strength

Nature Geosciencevolume 11pages274279 (2018) | Download Citation


Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Schouten, H., Klitgord, K. D. & Whitehead, J. A. Segmentation of mid-ocean ridges. Nature 317, 225–229 (1985).

  2. 2.

    MacDonald, K. C. et al. A new view of the mid-ocean ridge from the behavior of ridge-axis discontinuities. Nature 335, 217–225 (1988).

  3. 3.

    Lin, J. & Parmentier, E. M. A finite amplitude necking model of rifting in brittle lithosphere. J. Geophys. Res. 95, 4909–4923 (1990).

  4. 4.

    Phipps Morgan, J. & Chen, J. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364, 706–708 (1993).

  5. 5.

    Oldenburg, D. W. & Brune, J. N. An explanation for the orthogonality of ocean ridges and transform faults. J. Geophys. Res. 80, 2575–2585 (1975).

  6. 6.

    Gerya, T. Origin and model of oceanic transform faults. Tectonophysics 522–523, 34–54 (2012).

  7. 7.

    Wilson, J. T. A new class of faults and their bearing on continental drift. Nature 207, 343–347 (1965).

  8. 8.

    Sempéré, J. C. et al. The Mid-Atlantic Ridge between 29°N and 31°30′N in the last 10 Ma. Earth Planet. Sci. Lett. 130, 45–55 (1995).

  9. 9.

    Fox, P. J. & Gallo, D. G. A tectonic model for ridge-transform-ridge plate boundaries: implications for the structure of oceanic lithosphere. Tectonophysics 104, 205–242 (1984).

  10. 10.

    Baines, A. G. et al. Evolution of the Southwest Indian Ridge from 55°45′E to 62°E: changes in plate-boundary geometry since 26 Ma. Geochem. Geophys. Geosyst. 8, Q06022 (2007).

  11. 11.

    Muller, R. D., Roest, W. R. & Royer, J. Asymmetric sea-floor spreading caused by ridge-plume interactions. Nature 396, 455–459 (1998).

  12. 12.

    Mittelstaedt, E., Ito, G. & Behn, M. D. Mid-ocean jumps associated with hotspot magmatism. Earth Planet. Sci. Lett. 266, 256–270 (2008).

  13. 13.

    Mittelstaedt, E., Ito, G. & van Hunen, J. Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration. J. Geophys. Res. 116, B01102 (2011).

  14. 14.

    MacDonald, K. C. in The Geology of North-America: The Western North Atlantic Region Vol. M (eds Vogt, P. R. & Tucholke, B. E) 51–68 (Geological Society of America, Boulder, 1986).

  15. 15.

    Spencer, S., Smith, D. K., Cann, J. R., Lin, J. & McAllister, E. Structure and stability of non-transform discontinuities on the Mid-Atlantic Ridge between 24°N and 30°N. Mar. Geophys. Res. 19, 339–362 (1997).

  16. 16.

    MacDonald, K. C. Mid-ocean ridges: fine-scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annu. Rev. Earth Planet. Sci. 10, 155–190 (1982).

  17. 17.

    MacDonald, K. C. & Fox, P. J. Overlapping spreading centers: new accretion geometry on the East Pacific Rise. Nature 302, 55–58 (1983).

  18. 18.

    Sempéré, J. & MacDonald, K. C. Overlapping spreading centers: implications from crack growth simulation by the displacement discontinuity method. Tectonics 5, 151–163 (1986).

  19. 19.

    Tentler, T. & Acocella, V. How does the initial configuration of oceanic ridge segments affect their interaction? Insights from analogue models. J. Geophys. Res. 115, B01401 (2010).

  20. 20.

    Schouten, H., Klitgord, K.D. & Gallo, D. G. Edge-driven microplate kinematics. J. Geophys. Res. 98, 6689–6701 (1993).

  21. 21.

    Carbotte, S. M. & Macdonald, K. C. Comparison of seafloor tectonic fabric at intermediate, fast, and super fast spreading ridges: Influence of spreading rate, plate motions, and ridge segmentation on fault patterns. J. Geophys. Res. 99, 13609–13631 (1994).

  22. 22.

    Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).

  23. 23.

    Naar, D. F. & Hey, R. H. Speed limit for oceanic transform faults. Geology 17, 420–422 (1989).

  24. 24.

    Oldenburg, D. W. & Brune, J. N. Ridge transform fault spreading pattern in freezing wax. Science 178, 301–304 (1972).

  25. 25.

    Shemenda, A. L. & Grocholsky, A. L. Physical modeling of slow seafloor spreading. J. Geophys. Res. 99, 9137–9153 (1994).

  26. 26.

    Dauteuil, O., Bourgeois, O. & Mauduit, T. Lithosphere strength controls oceanic transform zone structure: insights from analogue models. Geophys. J. Int. 150, 706–714 (2002).

  27. 27.

    Marques, F. O., Cobbold, P. R. & Lourenço, N. Physical models of rifting and transform faulting, due to ridge push in a wedge-shaped oceanic lithosphere. Tectonophysics 443, 37–52 (2007).

  28. 28.

    Püthe, C. & Gerya, T. Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondwana Res. 25, 270–283 (2014).

  29. 29.

    Turcotte, D. & Schubert, G. Geodynamics (Cambridge Univ. Press, New York, 1982).

  30. 30.

    Mjede, R. et al. Magmatic and tectonic evolution of the North Atlantic. J. Geol. Soc. 165, 31–42 (2008).

  31. 31.

    Canales, J. P., Ito, G., Detrick, R. S. & Sinton, J. Crustal thickness along the western Galapagos Spreading Center and the compensation of the Galapagos hotspot swell. Earth Planet. Sci. Lett. 203, 311–327 (2002).

  32. 32.

    Schmeling, H. & Marquart, G. A scaling law for approximating porous hydrothermal convection by an equivalent thermal conductivity: theory and application to the cooling oceanic lithosphere. Geophys. J. Int. 197, 645–664 (2014).

  33. 33.

    Schultz, R. A. Brittle strength of basaltic rock masses with applications to Venus. J. Geophys. Res. 98, 10883–10895 (1993).

  34. 34.

    Sandwell, D. T. Thermal stress and the spacings of transform faults. J. Geophys. Res. 91, 6405–6417 (1986).

  35. 35.

    Ligi, M., Bonatti, E., Gasperini, L. & Poliakov, A. N. B. Oceanic broad multifault transform plate boundaries. Geology 30, 1–14 (2002).

  36. 36.

    Hieronymus, C. F. Control on seafloor spreading geometries by stress- and strain-induced lithospheric weakening. Earth Planet. Sci. Lett. 222, 177–189 (2004).

  37. 37.

    Gerya, T. Dynamical instability produces transform faults at mid-ocean ridges. Science 329, 1047–1050 (2010).

  38. 38.

    O’Bryan, J. W., Cohen, R. & Gilliland, W. N. Experimental origin of transform faults and straight spreading-center segments. Geol. Soc. Am. Bull. 86, 793–796 (1975).

  39. 39.

    Brune, J. N. Seismic moment, seismicity, and the rate of slip along major fault zones. J. Geophys. Res. 73, 777–784 (1968).

  40. 40.

    Audoly, B. & Hutchinson, J. W. Analysis of necking based on a one-dimensional model. J. Mech. Phys. Solids 97, 68–91 (2016).

  41. 41.

    Small, C. & Sandwell, D. T. Imaging mid-ocean ridge transitions with satellite gravity. Geology 22, 123–126 (1994).

  42. 42.

    Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res. 5, 165–172 (1981).

  43. 43.

    Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 121, 435–449 (1994).

  44. 44.

    Ito, G. & Dunn, R. in Encyclopedia of Ocean Sciences (eds Steele, J. H. et al.) 867–880 (Academic Press, Oxford, 2009).

  45. 45.

    Buck, W. R., Lavier, L. L. & Poliakov, A. N. B. Modes of faulting at mid-ocean ridges. Nature 434, 719–723 (2005).

  46. 46.

    Ito, G. & Behn, M. D. Magmatic and tectonic extension at mid-ocean ridges: 2. Origin of axial morphology. Geochem. Geophys. Geosyst. 9, Q09O12 (2008).

  47. 47.

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

  48. 48.

    O’Neill, C., Jellinek, A. M. & Lenardic, A. Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth Planet. Sci. Lett. 261, 20–32 (2007).

  49. 49.

    Swanson-Hysell, N. L., Maloof, A. C., Evans, D. A. D. & Weiss, B. P. No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts. Nat. Geosci. 2, 713–717 (2009).

  50. 50.

    Conrad, C. & Hager, B. Mantle convection with strong subduction zones. Geophys. J. Int. 144, 271–288 (2001).

  51. 51.

    Di Giuseppe, E., Davaille, A., Mittelstaedt, E. & François, M. Rheological and mechanical properties of silica colloids: from Newtonian liquid to brittle behavior. Rheol. Acta 51, 451–465 (2012).

  52. 52.

    Trompette, J. L. & Meireles, M. Ion-specific effect on the gelation kinetics of concentrated colloidal silica suspensions. J. Colloid Interf. Sci. 263, 522–527 (2003).

  53. 53.

    Davaille, A., Smrekar, S. E. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 329–355 (2017).

  54. 54.

    Carslaw, H. S. & Jaeger, J. C. Operational Methods in Applied Mathematics (Dover Publications, New York, 1963).

  55. 55.

    Dalton, C. A., Langmuir, C. H. & Gale, A. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science 344, 80–83 (2014).

  56. 56.

    Sibrant, A. L. R. & Pauchard, L. Effect of the particle interactions on the structuration and mechanical strength of particulate materials. EPL 116, 49002 (2016).

  57. 57.

    Johnson, K. L. Contact Mechanics (Cambridge Univ. Press, Cambridge, 1985).

  58. 58.

    Barlet, M. et al. Hardness and toughness of sodium borosilicate glasses via Vickers’s indentations. J. Non-Cryst. Solids 417-418, 66–79 (2015).

  59. 59.

    Chantikul, P., Anstis, G. R., Lawn, B. R. & Marschall, D. B. A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method. J. Am. Ceram. Soc. 64, 539–543 (1981).

  60. 60.

    Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge University Press, Cambridge, 2001).

  61. 61.

    Davaille, A. & Jaupart, C. Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. J. Geophys. Res. 99, 19853–19866 (1994).

  62. 62.

    Briais, A. & Rabinowicz, M. Temporal variations of the segmentation of slow to intermediate spreading mid-ocean ridges 1. Synoptic observations based on satellite altimetry data. J. Geophys. Res. 107, ECV 3-1–ECV 3-17 (2002).

  63. 63.

    Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, Q03014 (2009).

  64. 64.

    DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

Download references


A.L.R.S. was supported by the NSF under the EAR GeoPRISMS programme (grant no. EAR-1456664). E.M. was supported during early phases of this work by NSF grant no. OISE-0757920. The experiments in FAST were supported by grants to A.D. from PNP-INSU and the French ANR ‘PTECTO’ (ANR-09-BLAN-0142). The authors would like to thank M. Behn, and M. Maia for fruitful discussions.

Author information


  1. Department of Geological Sciences, University of Idaho, Moscow, Idaho, USA

    • A. L. R. Sibrant
    •  & E. Mittelstaedt
  2. Laboratoire FAST, CNRS, Université Paris-Sud/Université Paris-Saclay, Orsay, France

    • A. L. R. Sibrant
    • , A. Davaille
    • , L. Pauchard
    • , A. Aubertin
    • , L. Auffray
    •  & R. Pidoux


  1. Search for A. L. R. Sibrant in:

  2. Search for E. Mittelstaedt in:

  3. Search for A. Davaille in:

  4. Search for L. Pauchard in:

  5. Search for A. Aubertin in:

  6. Search for L. Auffray in:

  7. Search for R. Pidoux in:


E.M. and A.D. initiated the project and conceived the experimental procedure. A.L.R.S. and E.M. carried out the laboratory experiments. A.L.R.S. and L.P. measured the fluid’s mechanical properties. A.D. determined the scaling laws. A.A., L.A. and R.P. designed and constructed the experimental apparatus. A.A. wrote the control software. A.L.R.S., E.M. and A.D. treated the data and wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to A. L. R. Sibrant.

Supplementary information

  1. Supplementary Information

    Supplementary figures and tables

  2. Supplementary Movie

    Evolution of a mid-ocean ridge in the laboratory for V = 10 mm min–1

About this article

Publication history