Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accretion mode of oceanic ridges governed by axial mechanical strength

Abstract

Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MORs on Earth.
Fig. 2: MORs in the laboratory.
Fig. 3: Values of LD scaled by Zc relative to the axial failure parameter.
Fig. 4: Spreading rate versus predicted values of ΠF.

Similar content being viewed by others

References

  1. Schouten, H., Klitgord, K. D. & Whitehead, J. A. Segmentation of mid-ocean ridges. Nature 317, 225–229 (1985).

    Article  Google Scholar 

  2. MacDonald, K. C. et al. A new view of the mid-ocean ridge from the behavior of ridge-axis discontinuities. Nature 335, 217–225 (1988).

    Article  Google Scholar 

  3. Lin, J. & Parmentier, E. M. A finite amplitude necking model of rifting in brittle lithosphere. J. Geophys. Res. 95, 4909–4923 (1990).

    Article  Google Scholar 

  4. Phipps Morgan, J. & Chen, J. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364, 706–708 (1993).

    Article  Google Scholar 

  5. Oldenburg, D. W. & Brune, J. N. An explanation for the orthogonality of ocean ridges and transform faults. J. Geophys. Res. 80, 2575–2585 (1975).

    Article  Google Scholar 

  6. Gerya, T. Origin and model of oceanic transform faults. Tectonophysics 522–523, 34–54 (2012).

    Article  Google Scholar 

  7. Wilson, J. T. A new class of faults and their bearing on continental drift. Nature 207, 343–347 (1965).

    Article  Google Scholar 

  8. Sempéré, J. C. et al. The Mid-Atlantic Ridge between 29°N and 31°30′N in the last 10 Ma. Earth Planet. Sci. Lett. 130, 45–55 (1995).

    Article  Google Scholar 

  9. Fox, P. J. & Gallo, D. G. A tectonic model for ridge-transform-ridge plate boundaries: implications for the structure of oceanic lithosphere. Tectonophysics 104, 205–242 (1984).

    Article  Google Scholar 

  10. Baines, A. G. et al. Evolution of the Southwest Indian Ridge from 55°45′E to 62°E: changes in plate-boundary geometry since 26 Ma. Geochem. Geophys. Geosyst. 8, Q06022 (2007).

    Article  Google Scholar 

  11. Muller, R. D., Roest, W. R. & Royer, J. Asymmetric sea-floor spreading caused by ridge-plume interactions. Nature 396, 455–459 (1998).

    Article  Google Scholar 

  12. Mittelstaedt, E., Ito, G. & Behn, M. D. Mid-ocean jumps associated with hotspot magmatism. Earth Planet. Sci. Lett. 266, 256–270 (2008).

    Article  Google Scholar 

  13. Mittelstaedt, E., Ito, G. & van Hunen, J. Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration. J. Geophys. Res. 116, B01102 (2011).

    Article  Google Scholar 

  14. MacDonald, K. C. in The Geology of North-America: The Western North Atlantic Region Vol. M (eds Vogt, P. R. & Tucholke, B. E) 51–68 (Geological Society of America, Boulder, 1986).

  15. Spencer, S., Smith, D. K., Cann, J. R., Lin, J. & McAllister, E. Structure and stability of non-transform discontinuities on the Mid-Atlantic Ridge between 24°N and 30°N. Mar. Geophys. Res. 19, 339–362 (1997).

    Article  Google Scholar 

  16. MacDonald, K. C. Mid-ocean ridges: fine-scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annu. Rev. Earth Planet. Sci. 10, 155–190 (1982).

    Article  Google Scholar 

  17. MacDonald, K. C. & Fox, P. J. Overlapping spreading centers: new accretion geometry on the East Pacific Rise. Nature 302, 55–58 (1983).

    Article  Google Scholar 

  18. Sempéré, J. & MacDonald, K. C. Overlapping spreading centers: implications from crack growth simulation by the displacement discontinuity method. Tectonics 5, 151–163 (1986).

    Article  Google Scholar 

  19. Tentler, T. & Acocella, V. How does the initial configuration of oceanic ridge segments affect their interaction? Insights from analogue models. J. Geophys. Res. 115, B01401 (2010).

    Article  Google Scholar 

  20. Schouten, H., Klitgord, K.D. & Gallo, D. G. Edge-driven microplate kinematics. J. Geophys. Res. 98, 6689–6701 (1993).

    Article  Google Scholar 

  21. Carbotte, S. M. & Macdonald, K. C. Comparison of seafloor tectonic fabric at intermediate, fast, and super fast spreading ridges: Influence of spreading rate, plate motions, and ridge segmentation on fault patterns. J. Geophys. Res. 99, 13609–13631 (1994).

    Article  Google Scholar 

  22. Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).

    Article  Google Scholar 

  23. Naar, D. F. & Hey, R. H. Speed limit for oceanic transform faults. Geology 17, 420–422 (1989).

    Article  Google Scholar 

  24. Oldenburg, D. W. & Brune, J. N. Ridge transform fault spreading pattern in freezing wax. Science 178, 301–304 (1972).

    Article  Google Scholar 

  25. Shemenda, A. L. & Grocholsky, A. L. Physical modeling of slow seafloor spreading. J. Geophys. Res. 99, 9137–9153 (1994).

    Article  Google Scholar 

  26. Dauteuil, O., Bourgeois, O. & Mauduit, T. Lithosphere strength controls oceanic transform zone structure: insights from analogue models. Geophys. J. Int. 150, 706–714 (2002).

    Article  Google Scholar 

  27. Marques, F. O., Cobbold, P. R. & Lourenço, N. Physical models of rifting and transform faulting, due to ridge push in a wedge-shaped oceanic lithosphere. Tectonophysics 443, 37–52 (2007).

    Article  Google Scholar 

  28. Püthe, C. & Gerya, T. Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondwana Res. 25, 270–283 (2014).

    Article  Google Scholar 

  29. Turcotte, D. & Schubert, G. Geodynamics (Cambridge Univ. Press, New York, 1982).

    Google Scholar 

  30. Mjede, R. et al. Magmatic and tectonic evolution of the North Atlantic. J. Geol. Soc. 165, 31–42 (2008).

    Article  Google Scholar 

  31. Canales, J. P., Ito, G., Detrick, R. S. & Sinton, J. Crustal thickness along the western Galapagos Spreading Center and the compensation of the Galapagos hotspot swell. Earth Planet. Sci. Lett. 203, 311–327 (2002).

    Article  Google Scholar 

  32. Schmeling, H. & Marquart, G. A scaling law for approximating porous hydrothermal convection by an equivalent thermal conductivity: theory and application to the cooling oceanic lithosphere. Geophys. J. Int. 197, 645–664 (2014).

    Article  Google Scholar 

  33. Schultz, R. A. Brittle strength of basaltic rock masses with applications to Venus. J. Geophys. Res. 98, 10883–10895 (1993).

    Article  Google Scholar 

  34. Sandwell, D. T. Thermal stress and the spacings of transform faults. J. Geophys. Res. 91, 6405–6417 (1986).

    Article  Google Scholar 

  35. Ligi, M., Bonatti, E., Gasperini, L. & Poliakov, A. N. B. Oceanic broad multifault transform plate boundaries. Geology 30, 1–14 (2002).

    Article  Google Scholar 

  36. Hieronymus, C. F. Control on seafloor spreading geometries by stress- and strain-induced lithospheric weakening. Earth Planet. Sci. Lett. 222, 177–189 (2004).

    Article  Google Scholar 

  37. Gerya, T. Dynamical instability produces transform faults at mid-ocean ridges. Science 329, 1047–1050 (2010).

    Article  Google Scholar 

  38. O’Bryan, J. W., Cohen, R. & Gilliland, W. N. Experimental origin of transform faults and straight spreading-center segments. Geol. Soc. Am. Bull. 86, 793–796 (1975).

    Article  Google Scholar 

  39. Brune, J. N. Seismic moment, seismicity, and the rate of slip along major fault zones. J. Geophys. Res. 73, 777–784 (1968).

    Article  Google Scholar 

  40. Audoly, B. & Hutchinson, J. W. Analysis of necking based on a one-dimensional model. J. Mech. Phys. Solids 97, 68–91 (2016).

    Article  Google Scholar 

  41. Small, C. & Sandwell, D. T. Imaging mid-ocean ridge transitions with satellite gravity. Geology 22, 123–126 (1994).

    Article  Google Scholar 

  42. Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res. 5, 165–172 (1981).

    Google Scholar 

  43. Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 121, 435–449 (1994).

    Article  Google Scholar 

  44. Ito, G. & Dunn, R. in Encyclopedia of Ocean Sciences (eds Steele, J. H. et al.) 867–880 (Academic Press, Oxford, 2009).

  45. Buck, W. R., Lavier, L. L. & Poliakov, A. N. B. Modes of faulting at mid-ocean ridges. Nature 434, 719–723 (2005).

    Article  Google Scholar 

  46. Ito, G. & Behn, M. D. Magmatic and tectonic extension at mid-ocean ridges: 2. Origin of axial morphology. Geochem. Geophys. Geosyst. 9, Q09O12 (2008).

    Article  Google Scholar 

  47. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  48. O’Neill, C., Jellinek, A. M. & Lenardic, A. Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth Planet. Sci. Lett. 261, 20–32 (2007).

    Article  Google Scholar 

  49. Swanson-Hysell, N. L., Maloof, A. C., Evans, D. A. D. & Weiss, B. P. No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts. Nat. Geosci. 2, 713–717 (2009).

    Article  Google Scholar 

  50. Conrad, C. & Hager, B. Mantle convection with strong subduction zones. Geophys. J. Int. 144, 271–288 (2001).

    Article  Google Scholar 

  51. Di Giuseppe, E., Davaille, A., Mittelstaedt, E. & François, M. Rheological and mechanical properties of silica colloids: from Newtonian liquid to brittle behavior. Rheol. Acta 51, 451–465 (2012).

    Article  Google Scholar 

  52. Trompette, J. L. & Meireles, M. Ion-specific effect on the gelation kinetics of concentrated colloidal silica suspensions. J. Colloid Interf. Sci. 263, 522–527 (2003).

    Article  Google Scholar 

  53. Davaille, A., Smrekar, S. E. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 329–355 (2017).

    Article  Google Scholar 

  54. Carslaw, H. S. & Jaeger, J. C. Operational Methods in Applied Mathematics (Dover Publications, New York, 1963).

    Google Scholar 

  55. Dalton, C. A., Langmuir, C. H. & Gale, A. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science 344, 80–83 (2014).

    Article  Google Scholar 

  56. Sibrant, A. L. R. & Pauchard, L. Effect of the particle interactions on the structuration and mechanical strength of particulate materials. EPL 116, 49002 (2016).

    Article  Google Scholar 

  57. Johnson, K. L. Contact Mechanics (Cambridge Univ. Press, Cambridge, 1985).

    Book  Google Scholar 

  58. Barlet, M. et al. Hardness and toughness of sodium borosilicate glasses via Vickers’s indentations. J. Non-Cryst. Solids 417-418, 66–79 (2015).

    Article  Google Scholar 

  59. Chantikul, P., Anstis, G. R., Lawn, B. R. & Marschall, D. B. A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method. J. Am. Ceram. Soc. 64, 539–543 (1981).

    Article  Google Scholar 

  60. Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge University Press, Cambridge, 2001).

  61. Davaille, A. & Jaupart, C. Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. J. Geophys. Res. 99, 19853–19866 (1994).

    Article  Google Scholar 

  62. Briais, A. & Rabinowicz, M. Temporal variations of the segmentation of slow to intermediate spreading mid-ocean ridges 1. Synoptic observations based on satellite altimetry data. J. Geophys. Res. 107, ECV 3-1–ECV 3-17 (2002).

    Article  Google Scholar 

  63. Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, Q03014 (2009).

    Article  Google Scholar 

  64. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys. J. Int. 181, 1–80 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

A.L.R.S. was supported by the NSF under the EAR GeoPRISMS programme (grant no. EAR-1456664). E.M. was supported during early phases of this work by NSF grant no. OISE-0757920. The experiments in FAST were supported by grants to A.D. from PNP-INSU and the French ANR ‘PTECTO’ (ANR-09-BLAN-0142). The authors would like to thank M. Behn, and M. Maia for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.M. and A.D. initiated the project and conceived the experimental procedure. A.L.R.S. and E.M. carried out the laboratory experiments. A.L.R.S. and L.P. measured the fluid’s mechanical properties. A.D. determined the scaling laws. A.A., L.A. and R.P. designed and constructed the experimental apparatus. A.A. wrote the control software. A.L.R.S., E.M. and A.D. treated the data and wrote the manuscript.

Corresponding author

Correspondence to A. L. R. Sibrant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables

Supplementary Movie

Evolution of a mid-ocean ridge in the laboratory for V = 10 mm min–1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibrant, A.L.R., Mittelstaedt, E., Davaille, A. et al. Accretion mode of oceanic ridges governed by axial mechanical strength. Nature Geosci 11, 274–279 (2018). https://doi.org/10.1038/s41561-018-0084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0084-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing