Net retreat of Antarctic glacier grounding lines


Grounding lines are a key indicator of ice-sheet instability, because changes in their position reflect imbalance with the surrounding ocean and affect the flow of inland ice. Although the grounding lines of several Antarctic glaciers have retreated rapidly due to ocean-driven melting, records are too scarce to assess the scale of the imbalance. Here, we combine satellite altimeter observations of ice-elevation change and measurements of ice geometry to track grounding-line movement around the entire continent, tripling the coverage of previous surveys. Between 2010 and 2016, 22%, 3% and 10% of surveyed grounding lines in West Antarctica, East Antarctica and at the Antarctic Peninsula retreated at rates faster than 25 m yr−1 (the typical pace since the Last Glacial Maximum) and the continent has lost 1,463 km2 ± 791 km2 of grounded-ice area. Although by far the fastest rates of retreat occurred in the Amundsen Sea sector, we show that the Pine Island Glacier grounding line has stabilized, probably as a consequence of abated ocean forcing. On average, Antarctica’s fast-flowing ice streams retreat by 110 metres per metre of ice thinning.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Rates of grounding-line migration between 2010 and 2016 along the Antarctic grounding line8 derived from CryoSat-2 and bedrock topography24 observations.
Fig. 2: Continuation of rates of grounding-line migration in the Amundsen Sea11,12 by our approach.
Fig. 3: Rates of grounding-line migration versus rates of surface elevation.


  1. 1.

    Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

    Article  Google Scholar 

  2. 2.

    Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. 112, F03S28 (2007).

    Article  Google Scholar 

  3. 3.

    Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci. 1, 106–110 (2008).

    Article  Google Scholar 

  4. 4.

    Docquier, D., Perichon, L. & Pattyn, F. Representing grounding line dynamics in numerical ice sheet models: recent advances and outlook. Surv. Geophys. 32, 417–435 (2011).

    Article  Google Scholar 

  5. 5.

    Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009).

    Article  Google Scholar 

  6. 6.

    Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).

    Article  Google Scholar 

  7. 7.

    Shepherd, A. et al. Recent loss of floating ice and the consequent sea level contribution. Geophys. Res. Lett. 37, L13503 (2010).

    Article  Google Scholar 

  8. 8.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    Article  Google Scholar 

  9. 9.

    Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

    Article  Google Scholar 

  10. 10.

    Rignot, E. J. Fast recession of a West Antarctic glacier. Science 281, 549–551 (1998).

    Article  Google Scholar 

  11. 11.

    Park, J. W. et al. Sustained retreat of the Pine Island Glacier. Geophys. Res. Lett. 40, 2137–2142 (2013).

    Article  Google Scholar 

  12. 12.

    Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article  Google Scholar 

  13. 13.

    Christie, F. D. W., Bingham, R. G., Gourmelen, N., Tett, S. F. B. & Muto, A. Four-decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica. Geophys. Res. Lett. 43, 5741–5749 (2016).

    Article  Google Scholar 

  14. 14.

    Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).

    Article  Google Scholar 

  15. 15.

    Scheuchl, B., Mouginot, J., Rignot, E., Morlighem, M. & Khazendar, A. Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data. Geophys. Res. Lett. 43, 8572–8579 (2016).

    Article  Google Scholar 

  16. 16.

    Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    Article  Google Scholar 

  17. 17.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  18. 18.

    Fricker, H. A. et al. Redefinition of the Amery Ice Shelf, East Antarctica, grounding zone. J. Geophys. Res. 107, ECV 1-1–ECV 1-9 (2002).

  19. 19.

    Horgan, H. J. & Anandakrishnan, S. Static grounding lines and dynamic ice streams: evidence from the Siple Coast, West Antarctica. Geophys. Res. Lett. 33, L18502 (2006).

    Article  Google Scholar 

  20. 20.

    Goldstein, R. M., Engelhardt, H., Kamb, B. & Frolich, R. M. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262, 1525–1530 (1993).

    Article  Google Scholar 

  21. 21.

    Gray, L. et al. RADARSAT interferometry for Antarctic grounding-zone mapping. Ann. Glaciol. 34, 269–276 (2002).

    Article  Google Scholar 

  22. 22.

    Shepherd, A., Wingham, D. J. & Mansley, J. A. D. Inland thinning of the Amundsen Sea sector, West Antarctica. Geophys. Res. Lett. 29, 2–4 (2002).

    Article  Google Scholar 

  23. 23.

    McMillan, M. et al. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 41, 3899–3905 (2014).

    Article  Google Scholar 

  24. 24.

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    Article  Google Scholar 

  25. 25.

    Rignot, E., Mouginot, J. & Scheuchl, B. Antarctic grounding line mapping from differential satellite radar interferometry. Geophys. Res. Lett. 38, L10504 (2011).

    Article  Google Scholar 

  26. 26.

    Smith, J. A. et al. New constraints on the timing of West Antarctic Ice Sheet retreat in the eastern Amundsen Sea since the Last Glacial Maximum. Glob. Planet. Change 122, 224–237 (2014).

    Article  Google Scholar 

  27. 27.

    Pollard, D., Chang, W., Haran, M., Applegate, P. & DeConto, R. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques. Geosci. Model Dev. 9, 1697–1723 (2016).

    Article  Google Scholar 

  28. 28.

    Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

    Article  Google Scholar 

  29. 29.

    Lenaerts, J. T. M. et al. Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett. 40, 2684–2688 (2013).

    Article  Google Scholar 

  30. 30.

    Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012).

    Google Scholar 

  31. 31.

    Jenkins, A. et al. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci. 3, 468–472 (2010).

    Article  Google Scholar 

  32. 32.

    Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016).

    Article  Google Scholar 

  33. 33.

    Holland, P. R., Jenkins, A. & Holland, D. M. Ice and ocean processes in the Bellingshausen Sea, Antarctica. J. Geophys. Res. Ocean 115, C05020 (2010).

    Article  Google Scholar 

  34. 34.

    Hogg, A. E. et al. Increased ice flow in Western Palmer Land linked to ocean melting. Geophys. Res. Lett. 44, 4159–4167 (2017).

    Article  Google Scholar 

  35. 35.

    Konrad, H. et al. Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett. 44, 910–918 (2017).

    Article  Google Scholar 

  36. 36.

    Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    Article  Google Scholar 

  37. 37.

    Joughin, I., Shean, D. E., Smith, B. E. & Dutrieux, P. Grounding line variability and subglacial lake drainage on Pine Island Glacier, Antarctica. Geophys. Res. Lett. 43, 9093–9102 (2016).

    Article  Google Scholar 

  38. 38.

    Milillo, P. et al. On the short-term grounding zone dynamics of Pine Island Glacier, West Antarctica, observed with COSMO-SkyMed interferometric data. Geophys. Res. Lett. 44, 436–444 (2017).

    Article  Google Scholar 

  39. 39.

    Joughin, I. et al. Continued deceleration of Whillans ice stream West Antartica. Geophys. Res. Lett. 32, L22501 (2005).

    Article  Google Scholar 

  40. 40.

    de, Q. & Robin, G. Surface topography of ice sheets. Nature 215, 1029–1032 (1967).

    Article  Google Scholar 

  41. 41.

    Smith, A. M. et al. Rapid erosion, drumlin formation, and changing hydrology beneath an Antarctic ice stream. Geology 35, 127–130 (2007).

    Article  Google Scholar 

  42. 42.

    van den Berg, J., van de Wal, R. S. W., Milne, G. A. & Oerlemans, J. Effect of isostasy on dynamical ice sheet modeling: a case study for Eurasia. J. Geophys. Res. 113, B05412 (2008).

    Article  Google Scholar 

  43. 43.

    Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci. 4, 519–523 (2011).

    Article  Google Scholar 

  44. 44.

    Mouginot, J., Scheuchl, B. & Rignot, E. Mapping of ice motion in Antarctica using synthetic-aperture radar data. Remote Sens. 4, 2753–2767 (2012).

    Article  Google Scholar 

  45. 45.

    Ligtenberg, S. R. M., Horwath, M., van den Broeke, M. R. & Legrésy, B. Quantifying the seasonal ‘breathing’ of the Antarctic ice sheet. Geophys. Res. Lett. 39, L23501 (2012).

    Article  Google Scholar 

  46. 46.

    Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

    Article  Google Scholar 

  47. 47.

    Martín-Español, A. et al. An assessment of forward and inverse GIA solutions for Antarctica. J. Geophys. Res. 121, 6947–6965 (2016).

    Article  Google Scholar 

  48. 48.

    Armitage, T. W. K., Wingham, D. J. & Ridout, A. L. Meteorological origin of the static crossover pattern present in low-resolution-mode CryoSat-2 data over central Antarctica. IEEE Geosci. Remote Sens. Lett. 11, 1295–1299 (2014).

    Article  Google Scholar 

  49. 49.

    Griggs, J. A. & Bamber, J. L. Antarctic ice-shelf thickness from satellite radar altimetry. J. Glaciol. 57, 485–498 (2011).

    Article  Google Scholar 

  50. 50.

    Krystek, M. & Anton, M. A least-squares algorithm for fitting data points with mutually correlated coordinates to a straight line. Meas. Sci. Technol. 18, 3438–3442 (2007).

    Article  Google Scholar 

  51. 51.

    Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs InSAR-Based Antarctica Ice Velocity Map (NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, 2011);

  52. 52.

    Rignot, E., Mouginot, J. & Scheuchl, B. MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry, Version 2 (NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, CO, 2016);

Download references


We acknowledge the European Space Agency (ESA) for the provision of CryoSat-2 data and ESA’s Antarctic_Ice Sheet_cci, as well as the UK Natural Environment Research Council’s (NERC) Centre for Polar Observation and Modelling (CPOM) for processing of these data. H.K. was funded through the NERC’s iSTAR Programme and NERC Grant Number NE/J005681/1. A.E.H. was supported by an independent research fellowship (no. 4000112797/15/I-SBo) jointly funded by ESA, the University of Leeds and the British Antarctic Survey. The figures were produced using the Generic Mapping Tool (

Author information




H.K., A.S., A.E.H. and M.M. designed the study. L.G. and A.M. processed CryoSat-2 data. H.K., A.S., A.E.H., M.M. and T.S. analysed the results. H.K. and A.S. wrote the manuscript. All authors contributed to revising the manuscript.

Corresponding author

Correspondence to Hannes Konrad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures, Table 1 and References.

Supplementary Table 2

Surface elevation and grounding-line migration

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konrad, H., Shepherd, A., Gilbert, L. et al. Net retreat of Antarctic glacier grounding lines. Nature Geosci 11, 258–262 (2018).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing