Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves

Abstract

The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep mantle plume sourced at the base of the mantle supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep mantle beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-mantle plume. The anomaly is tilted to the northeast and extends from the core–mantle boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest mantle towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal mantle plumes that are currently beyond the resolution of global tomography models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Diagram of S, SKS and SKKS ray paths and a map of station and event locations with geologic features of the Yellowstone hotspot.
Fig. 2: Tomographic images of the lower mantle.
Fig. 3: Depth cross-section through the plume structure showing its connection with the Yellowstone hotspot.
Fig. 4: Resolution test results for 250-km-diameter plume structures.

References

  1. 1.

    Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  Google Scholar 

  2. 2.

    Campbell, I. H. Testing the plume theory. Chem. Geol. 241, 153–176 (2007).

    Article  Google Scholar 

  3. 3.

    Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    Article  Google Scholar 

  4. 4.

    Foulger, G. R. Plates vs Plumes: A Geological Controversy (Wiley-Blackwell, Hoboken, 2011).

  5. 5.

    Anderson, D. L. & Natland, J. H. Mantle updrafts and mechanisms of oceanic volcanism. Proc. Natl Acad. Sci. USA 111, E4298–E4304 (2014).

    Article  Google Scholar 

  6. 6.

    Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  Google Scholar 

  7. 7.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  Google Scholar 

  8. 8.

    Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006).

    Article  Google Scholar 

  9. 9.

    Maguire, R., Ritsema, J., van Keken, P. E., Fichtner, A. & Goes, S. P- and S-wave delays caused by thermal plumes. Geophys. J. Int. 206, 1169–1178 (2016).

    Article  Google Scholar 

  10. 10.

    Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  11. 11.

    Fouch, M. J. The Yellowstone hotspot: plume or not? Geology 40, 479–480 (2012).

    Article  Google Scholar 

  12. 12.

    Smith, R. B. & Braile, L. W. The Yellowstone hotspot. J. Volcanol. Geotherm. Res. 61, 121–129 (1994).

    Article  Google Scholar 

  13. 13.

    Graham, D. et al. Mantle source provinces beneath the northwestern USA delimited by helium isotopes in young basalts. J. Volcanol. Geotherm. Res. 188, 128–140 (2009).

    Article  Google Scholar 

  14. 14.

    Smith, R. B. et al. Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow. J. Volcanol. Geotherm. Res. 188, 26–56 (2009).

    Article  Google Scholar 

  15. 15.

    Schmandt, B., Dueker, K., Humphreys, E. & Hansen, S. Hot mantle upwelling across the 660 beneath Yellowstone. Earth Planet. Sci. Lett. 331, 224–236 (2012).

    Article  Google Scholar 

  16. 16.

    Obrebski, M., Allen, R. M., Xue, M. & Hung, S. H. Slab‐plume interaction beneath the Pacific Northwest. Geophys. Res. Lett. 37, L14305 (2010).

    Article  Google Scholar 

  17. 17.

    Foulger, G. R, Christiansen, R. L. & Anderson, D. L. The Yellowstone “Hot Spot” Track Results from Migrating Basin-range Extensio n. Geological Society of America Special Papers 215–238 (2015).

  18. 18.

    Leonard, T. & Liu, L. The role of a mantle plume in the formation of Yellowstone volcanism. Geophys. Res. Lett. 43, 1132–1139 (2016).

    Article  Google Scholar 

  19. 19.

    James, D. E., Fouch, M. J., Carlson, R. W. & Roth, J. B. Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Planet. Sci. Lett. 311, 124–135 (2011).

    Article  Google Scholar 

  20. 20.

    Long, M. D. Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back‐arc volcanism. Geochem. Geophys. Geosyst. 13, Q0AN01 (2012).

    Article  Google Scholar 

  21. 21.

    Liu, L. & Stegman, D. R. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature 482, 386–389 (2012).

    Article  Google Scholar 

  22. 22.

    Stevenson, D. J. Limits on lateral density and velocity variations in the Earth’s outer core. Geophys. J. Int. 88, 311–319 (1987).

    Article  Google Scholar 

  23. 23.

    Dahlen, F., Hung, S.-H. & Nolet, G. Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophys. J. Int. 141, 157–174 (2000).

    Article  Google Scholar 

  24. 24.

    Tromp, J., Komattisch, D. & Liu, Q. Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3, 1–32 (2008).

    Google Scholar 

  25. 25.

    Ritsema, J., Deuss, A., Van Heijst, H. & Woodhouse, J. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  26. 26.

    French, S. W. & Romanowicz, B. A. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).

    Article  Google Scholar 

  27. 27.

    Lu, C. & Grand, S. P. The effect of subducting slabs in global shear wave tomography. Geophys. J. Int. 205, 1074–1085 (2016).

    Article  Google Scholar 

  28. 28.

    Schmandt, B. & Lin, F. C. P and S wave tomography of the mantle beneath the United States. Geophys. Res. Lett. 41, 6342–6349 (2014).

    Article  Google Scholar 

  29. 29.

    Paige, C. C. & Saunders, M. A. Towards a generalized singular value decomposition. SIAM J. Numer. Anal. 18, 398–405 (1981).

    Article  Google Scholar 

  30. 30.

    Sigloch, K. Mantle provinces under North America from multifrequency P wave tomography. Geochem. Geophys. Geosyst. 12, Q02W08 (2011).

    Article  Google Scholar 

  31. 31.

    Stixrude, L. & Lithgow-Bertelloni, C. Geophysics of chemical heterogeneity in the mantle. Annu. Rev. Earth Planet. Sci. 40, 569–595 (2012).

    Article  Google Scholar 

  32. 32.

    Lin, S. C. & van Keken, P. E. Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer. Geochem. Geophy. Geosyst. 7, c001071 (2006).

    Article  Google Scholar 

  33. 33.

    Leng, W. & Zhong, S. Controls on plume heat flux and plume excess temperature. J. Geophys. Res. Solid Earth 113, B04408 (2008).

    Article  Google Scholar 

  34. 34.

    Steinberger, B. Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res. Solid Earth 105, 11127–11152 (2000).

    Article  Google Scholar 

  35. 35.

    Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 5920–5938 (2013).

    Article  Google Scholar 

  36. 36.

    Rudolph, M. L., Lekić, V. & Lithgow-Bertelloni, C. Viscosity jump in Earth’s mid-mantle. Science 350, 1349–1352 (2015).

    Article  Google Scholar 

  37. 37.

    Schmandt, B. & Humphreys, E. Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth Planet. Sci. Lett. 297, 435–445 (2010).

    Article  Google Scholar 

  38. 38.

    Steinberger, B. M. Geodynamic models of a Yellowstone plume and its interaction with subduction and large-scale mantle circulation. In AGU Fall Meeting abstr. V11E-05 (Americal Geophysical Union, 2012).

  39. 39.

    Rawlinson, N. & Kennett, B. L. N. Rapid estimation of relative and absolute delay times across a network by adaptive stacking. Geophys. J. Int. 157, 332–340 (2004).

    Article  Google Scholar 

  40. 40.

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  41. 41.

    Thorne, M. S., & Garnero, E. J. Inferences on ultralow‐velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res. Solid Earth 109, B0301 (2004).

  42. 42.

    Muller, G. The reflectivity method: a tutorial.J. Geophys. Zeit. Geophys. 58, 153–174 (1985).

    Google Scholar 

  43. 43.

    Nolet, G. Imaging the Interior (Cambridge Univ. Press, Cambridge, 2008)..

  44. 44.

    Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1. 0 — A 1‐degree global model of Earth’s crust. In EGU General Assembley EGU2013–2658 (European Geosciences Union, 2013)..

  45. 45.

    Kennett, B. L. N. Seismological Tables: ak135 1–289 (Research School of Earth Sciences, Australian National University, Canberra, 2005).

  46. 46.

    Stein, S. & Wysession, M. An Introduction to Seismology, Earthquakes, and Earth Structure (John Wiley & Sons, 2009).

  47. 47.

    Liu, K. H. et al. A uniform database of teleseismic shear wave splitting measurements for the western and central United States. Geochem. Geophys. Geosyst. 15, 2075–2085 (2014).

    Article  Google Scholar 

  48. 48.

    Currie, C. A., Cassidy, J. F., Hyndman, R. D. & Bostock, M. G. Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton. Geophys. J. Int. 157, 341–353 (2004).

    Article  Google Scholar 

  49. 49.

    Evans, M. S., Kendall, J. M. & Willemann, R. J. Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations. Geophys. J. Int. 165, 931–942 (2006).

    Article  Google Scholar 

  50. 50.

    Frederiksen, A. W. Lithospheric variations across the Superior Province, Ontario, Canada: evidencefrom tomography and shear wave splitting. J. Geophys. Res. Solid Earth 112, B004861 (2007).

    Article  Google Scholar 

  51. 51.

    Balfour, N. J., Cassidy, J. F. & Dosso, S. E. Crustal anisotropy in the forearc of the northern Cascadia subduction zone, British Columbia. Geophys. J. Int. 188, 165–176 (2012).

    Article  Google Scholar 

  52. 52.

    Lee, D. K. & Grand, S. P. Upper mantle shear structure beneath the Colorado Rocky Mountains. J. Geophys. Res. Solid Earth 101, 22233–22244 (1996).

    Article  Google Scholar 

  53. 53.

    Coleman, T. F. & Li, Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996).

    Article  Google Scholar 

  54. 54.

    Hansen, P. C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We like to thank K. Tao and F. Zhang for helpful discussions about finite frequency tomography and S.-H. Hung for providing the tomography code. We also thank S. Yu and E. Garnero for providing the adaptive stacking travel time measurement code and B. Steinberger for useful discussion. Lastly, we thank P. Crotwell for help with S.O.D (Standing Order for Data) and the IRIS (Incorporated Research Institution for Seismology) Data Center and the Canadian National Data Center for providing the waveforms used in this experiment. This work was supported by the National Science Foundation grant EAR 1648770.

Author information

Affiliations

Authors

Contributions

S.P.G. designed the project. P.L.N. undertook the data measurements and tomography. P.L.N. and S.P.G cowrote the manuscript.

Corresponding author

Correspondence to Peter L. Nelson.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures showing the results of inversions using different starting models, the upper mantle results for the preferred model and additional resolution tests

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nelson, P.L., Grand, S.P. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. Nature Geosci 11, 280–284 (2018). https://doi.org/10.1038/s41561-018-0075-y

Download citation

Further reading