Article | Published:

Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves

Nature Geosciencevolume 11pages280284 (2018) | Download Citation


The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep mantle plume sourced at the base of the mantle supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep mantle beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-mantle plume. The anomaly is tilted to the northeast and extends from the core–mantle boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest mantle towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal mantle plumes that are currently beyond the resolution of global tomography models.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

  2. 2.

    Campbell, I. H. Testing the plume theory. Chem. Geol. 241, 153–176 (2007).

  3. 3.

    Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

  4. 4.

    Foulger, G. R. Plates vs Plumes: A Geological Controversy (Wiley-Blackwell, Hoboken, 2011).

  5. 5.

    Anderson, D. L. & Natland, J. H. Mantle updrafts and mechanisms of oceanic volcanism. Proc. Natl Acad. Sci. USA 111, E4298–E4304 (2014).

  6. 6.

    Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

  7. 7.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

  8. 8.

    Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006).

  9. 9.

    Maguire, R., Ritsema, J., van Keken, P. E., Fichtner, A. & Goes, S. P- and S-wave delays caused by thermal plumes. Geophys. J. Int. 206, 1169–1178 (2016).

  10. 10.

    Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

  11. 11.

    Fouch, M. J. The Yellowstone hotspot: plume or not? Geology 40, 479–480 (2012).

  12. 12.

    Smith, R. B. & Braile, L. W. The Yellowstone hotspot. J. Volcanol. Geotherm. Res. 61, 121–129 (1994).

  13. 13.

    Graham, D. et al. Mantle source provinces beneath the northwestern USA delimited by helium isotopes in young basalts. J. Volcanol. Geotherm. Res. 188, 128–140 (2009).

  14. 14.

    Smith, R. B. et al. Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow. J. Volcanol. Geotherm. Res. 188, 26–56 (2009).

  15. 15.

    Schmandt, B., Dueker, K., Humphreys, E. & Hansen, S. Hot mantle upwelling across the 660 beneath Yellowstone. Earth Planet. Sci. Lett. 331, 224–236 (2012).

  16. 16.

    Obrebski, M., Allen, R. M., Xue, M. & Hung, S. H. Slab‐plume interaction beneath the Pacific Northwest. Geophys. Res. Lett. 37, L14305 (2010).

  17. 17.

    Foulger, G. R, Christiansen, R. L. & Anderson, D. L. The Yellowstone “Hot Spot” Track Results from Migrating Basin-range Extensio n. Geological Society of America Special Papers 215–238 (2015).

  18. 18.

    Leonard, T. & Liu, L. The role of a mantle plume in the formation of Yellowstone volcanism. Geophys. Res. Lett. 43, 1132–1139 (2016).

  19. 19.

    James, D. E., Fouch, M. J., Carlson, R. W. & Roth, J. B. Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Planet. Sci. Lett. 311, 124–135 (2011).

  20. 20.

    Long, M. D. Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back‐arc volcanism. Geochem. Geophys. Geosyst. 13, Q0AN01 (2012).

  21. 21.

    Liu, L. & Stegman, D. R. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature 482, 386–389 (2012).

  22. 22.

    Stevenson, D. J. Limits on lateral density and velocity variations in the Earth’s outer core. Geophys. J. Int. 88, 311–319 (1987).

  23. 23.

    Dahlen, F., Hung, S.-H. & Nolet, G. Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophys. J. Int. 141, 157–174 (2000).

  24. 24.

    Tromp, J., Komattisch, D. & Liu, Q. Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3, 1–32 (2008).

  25. 25.

    Ritsema, J., Deuss, A., Van Heijst, H. & Woodhouse, J. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

  26. 26.

    French, S. W. & Romanowicz, B. A. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).

  27. 27.

    Lu, C. & Grand, S. P. The effect of subducting slabs in global shear wave tomography. Geophys. J. Int. 205, 1074–1085 (2016).

  28. 28.

    Schmandt, B. & Lin, F. C. P and S wave tomography of the mantle beneath the United States. Geophys. Res. Lett. 41, 6342–6349 (2014).

  29. 29.

    Paige, C. C. & Saunders, M. A. Towards a generalized singular value decomposition. SIAM J. Numer. Anal. 18, 398–405 (1981).

  30. 30.

    Sigloch, K. Mantle provinces under North America from multifrequency P wave tomography. Geochem. Geophys. Geosyst. 12, Q02W08 (2011).

  31. 31.

    Stixrude, L. & Lithgow-Bertelloni, C. Geophysics of chemical heterogeneity in the mantle. Annu. Rev. Earth Planet. Sci. 40, 569–595 (2012).

  32. 32.

    Lin, S. C. & van Keken, P. E. Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer. Geochem. Geophy. Geosyst. 7, c001071 (2006).

  33. 33.

    Leng, W. & Zhong, S. Controls on plume heat flux and plume excess temperature. J. Geophys. Res. Solid Earth 113, B04408 (2008).

  34. 34.

    Steinberger, B. Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res. Solid Earth 105, 11127–11152 (2000).

  35. 35.

    Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 5920–5938 (2013).

  36. 36.

    Rudolph, M. L., Lekić, V. & Lithgow-Bertelloni, C. Viscosity jump in Earth’s mid-mantle. Science 350, 1349–1352 (2015).

  37. 37.

    Schmandt, B. & Humphreys, E. Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth Planet. Sci. Lett. 297, 435–445 (2010).

  38. 38.

    Steinberger, B. M. Geodynamic models of a Yellowstone plume and its interaction with subduction and large-scale mantle circulation. In AGU Fall Meeting abstr. V11E-05 (Americal Geophysical Union, 2012).

  39. 39.

    Rawlinson, N. & Kennett, B. L. N. Rapid estimation of relative and absolute delay times across a network by adaptive stacking. Geophys. J. Int. 157, 332–340 (2004).

  40. 40.

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

  41. 41.

    Thorne, M. S., & Garnero, E. J. Inferences on ultralow‐velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res. Solid Earth 109, B0301 (2004).

  42. 42.

    Muller, G. The reflectivity method: a tutorial.J. Geophys. Zeit. Geophys. 58, 153–174 (1985).

  43. 43.

    Nolet, G. Imaging the Interior (Cambridge Univ. Press, Cambridge, 2008)..

  44. 44.

    Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1. 0 — A 1‐degree global model of Earth’s crust. In EGU General Assembley EGU2013–2658 (European Geosciences Union, 2013)..

  45. 45.

    Kennett, B. L. N. Seismological Tables: ak135 1–289 (Research School of Earth Sciences, Australian National University, Canberra, 2005).

  46. 46.

    Stein, S. & Wysession, M. An Introduction to Seismology, Earthquakes, and Earth Structure (John Wiley & Sons, 2009).

  47. 47.

    Liu, K. H. et al. A uniform database of teleseismic shear wave splitting measurements for the western and central United States. Geochem. Geophys. Geosyst. 15, 2075–2085 (2014).

  48. 48.

    Currie, C. A., Cassidy, J. F., Hyndman, R. D. & Bostock, M. G. Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton. Geophys. J. Int. 157, 341–353 (2004).

  49. 49.

    Evans, M. S., Kendall, J. M. & Willemann, R. J. Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations. Geophys. J. Int. 165, 931–942 (2006).

  50. 50.

    Frederiksen, A. W. Lithospheric variations across the Superior Province, Ontario, Canada: evidencefrom tomography and shear wave splitting. J. Geophys. Res. Solid Earth 112, B004861 (2007).

  51. 51.

    Balfour, N. J., Cassidy, J. F. & Dosso, S. E. Crustal anisotropy in the forearc of the northern Cascadia subduction zone, British Columbia. Geophys. J. Int. 188, 165–176 (2012).

  52. 52.

    Lee, D. K. & Grand, S. P. Upper mantle shear structure beneath the Colorado Rocky Mountains. J. Geophys. Res. Solid Earth 101, 22233–22244 (1996).

  53. 53.

    Coleman, T. F. & Li, Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996).

  54. 54.

    Hansen, P. C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992).

Download references


We like to thank K. Tao and F. Zhang for helpful discussions about finite frequency tomography and S.-H. Hung for providing the tomography code. We also thank S. Yu and E. Garnero for providing the adaptive stacking travel time measurement code and B. Steinberger for useful discussion. Lastly, we thank P. Crotwell for help with S.O.D (Standing Order for Data) and the IRIS (Incorporated Research Institution for Seismology) Data Center and the Canadian National Data Center for providing the waveforms used in this experiment. This work was supported by the National Science Foundation grant EAR 1648770.

Author information


  1. Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA

    • Peter L. Nelson
    •  & Stephen P. Grand


  1. Search for Peter L. Nelson in:

  2. Search for Stephen P. Grand in:


S.P.G. designed the project. P.L.N. undertook the data measurements and tomography. P.L.N. and S.P.G cowrote the manuscript.

Competing interests

The authors declare no competing interests

Corresponding author

Correspondence to Peter L. Nelson.

Supplementary information

  1. Supplementary Information

    Supplementary figures showing the results of inversions using different starting models, the upper mantle results for the preferred model and additional resolution tests

About this article

Publication history





Further reading