Abstract

Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5–13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Rudolph, J. The tropospheric distribution and budget of ethane. J. Geophys. Res. Atmos. 100, 11369–11381 (1995).

  2. 2.

    Rosado-Reyes, C. M. & Francisco, J. S. Atmospheric oxidation pathways of propane and its by-products: Acetone, acetaldehyde, and propionaldehyde. J. Geophys. Res Atmos. 112, D14310 (2007).

  3. 3.

    Franco, B. et al. Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America. Environ. Res. Lett. 11, 044010 (2016).

  4. 4.

    Helmig, D. et al. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production. Nat. Geosci. 9, 490–495 (2016).

  5. 5.

    Stein, O. & Rudolph, J. Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models. J. Geophys. Res. Atmos. 112, D14308 (2007).

  6. 6.

    Thompson, A., Rudolph, J., Rohrer, F. & Stein, O. Concentration and stable carbon isotopic composition of ethane and benzene using a global three-dimensional isotope inclusive chemical tracer model. J. Geophys. Res. Atmos. 108, 4373 (2003).

  7. 7.

    Emmons, L. K. et al. The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmos. Chem. Phys. 15, 6721–6744 (2015).

  8. 8.

    Li, M. et al. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmos. Chem. Phys. 14, 5617–5638 (2014).

  9. 9.

    Schwietzke, S., Griffin, W. M., Matthews, H. S. & Bruhwiler, L. M. P. Global bottom-up fossil fuel fugitive methane and ethane emissions inventory for atmospheric modeling. ACS Sustain. Chem. Eng. 2, 1992–2001 (2014).

  10. 10.

    Höglund-Isaksson, L. Bottom-up simulations of methane and ethane emissions from global oil and gas systems 1980 to 2012. Environ. Res. Lett. 12, 024007 (2017).

  11. 11.

    Huang, G. et al. Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012. Atmos. Chem. Phys. 17, 7683–7701 (2017).

  12. 12.

    Xiao, Y. et al. Global budget of ethane and regional constraints on U.S. sources. J. Geophys. Res. Atmos. 113, D21306 (2008).

  13. 13.

    Zavala-Araiza, D. et al. Reconciling divergent estimates of oil and gas methane emissions. Proc. Natl. Acad. Sci. USA 112, 15597–15602 (2015).

  14. 14.

    Karion, A. et al. Aircraft-based estimate of total methane emissions from the Barnett Shale region. Environ. Sci. Technol. 49, 8124–8131 (2015).

  15. 15.

    Kort, E. A. et al. Four corners: the largest US methane anomaly viewed from space. Geophys. Res. Lett. 41, 6898–6903 (2014).

  16. 16.

    Kort, E. A. et al. Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift. Geophys. Res. Lett. 43, 4617–4623 (2016).

  17. 17.

    Peischl, J. et al. Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. J. Geophys. Res. Atmos. 120, 2119–2139 (2015).

  18. 18.

    Pétron, G. et al. A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin. J. Geophys. Res. Atmos. 119, 6836–6852 (2014).

  19. 19.

    Swarthout, R. F. et al. Impact of Marcellus shale natural gas development in southwest Pennsylvania on volatile organic compound emissions and regional air quality. Environ. Sci. Technol. 49, 3175–3184 (2015).

  20. 20.

    Vinciguerra, T. et al. Regional air quality impacts of hydraulic fracturing and shale natural gas activity: evidence from ambient VOC observations. Atmos. Environ. 110, 144–150 (2015).

  21. 21.

    Schneising, O. et al. Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations. Earth’s Future 2, 548–558 (2014).

  22. 22.

    Moore, C. W., Zielinska, B., Pétron, G. & Jackson, R. B. Air impacts of increased natural gas acquisition, processing, and use: a critical review. Environ. Sci. Technol. 48, 8349–8359 (2014).

  23. 23.

    Roest, G. & Schade, G. Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement. Atmos. Chem. Phys. 17, 11163–11176 (2017).

  24. 24.

    Pozzer, A. et al. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations. Atmos. Chem. Phys. 7, 2527–2550 (2007).

  25. 25.

    González Abad, G. et al. Ethane, ethyne and carbon monoxide concentrations in the upper troposphere and lower stratosphere from ACE and GEOS-Chem: a comparison study. Atmos. Chem. Phys. 11, 9927–9941 (2011).

  26. 26.

    Angelbratt, J. et al. Carbon monoxide (CO) and ethane (C2H6) trends from ground-based solar FTIR measurements at six European stations, comparison and sensitivity analysis with the EMEP model. Atmos. Chem. Phys. 11, 9253–9269 (2011).

  27. 27.

    Lin, M., Holloway, T., Carmichael, G. R. & Fiore, A. M. Quantifying pollution inflow and outflow over East Asia in spring with regional and global models. Atmos. Chem. Phys. 10, 4221–4239 (2010).

  28. 28.

    Helmig, D. et al. Climatology and atmospheric chemistry of the non-methane hydrocarbons ethane and propane over the North Atlantic. Elementa 3 (2015).

  29. 29.

    Pozzer, A. et al. Observed and simulated global distribution and budget of atmospheric C2–C5 alkanes. Atmos. Chem. Phys. 10, 4403–4422 (2010).

  30. 30.

    Helmig, D. et al. Reconstruction of Northern Hemisphere 1950–2010 atmospheric non-methane hydrocarbons. Atmos. Chem. Phys. 14, 1463–1483 (2014).

  31. 31.

    Simpson, I. J. et al. Long-term decline of global atmospheric ethane concentrations and implications for methane. Nature 488, 490–494 (2012).

  32. 32.

    Hausmann, P., Sussmann, R. & Smale, D. Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top–down estimate from ethane and methane column observations. Atmos. Chem. Phys. 16, 3227–3244 (2016).

  33. 33.

    Aydin, M. et al. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature 476, 198–201 (2011).

  34. 34.

    Zeng, G. et al. Trends and variations in CO, C2H6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C2H6. Atmos. Chem. Phys. 12, 7543–7555 (2012).

  35. 35.

    Schwietzke, S., Griffin, W. M., Matthews, H. S. & Bruhwiler, L. M. P. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane. Environ. Sci. Technol. 48, 7714–7722 (2014).

  36. 36.

    Sherwood, O. A., Schwietzke, S., Arling, V. A. & Etiope, G. Global inventory of gas geochemistry data from fossil fuel, microbial and biomass burning sources, version 2017. Earth Syst. Sci. Data 9, 639–656 (2017).

  37. 37.

    Stohl, A. et al. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys. 13, 8833–8855 (2013).

  38. 38.

    McLinden, C. A. et al. Space-based detection of missing sulfur dioxide sources of global air pollution. Nat. Geosci. 9, 496–500 (2016).

  39. 39.

    Nicewonger, M. R., Verhulst, K. R., Aydin, M. & Saltzman, E. S. Preindustrial atmospheric ethane levels inferred from polar ice cores: a constraint on the geologic sources of atmospheric ethane and methane. Geophys. Res. Lett. 43, 214–221 (2016).

  40. 40.

    Etiope, G. & Ciccioli, P. Earth’s degassing: a missing ethane and propane source. Science 323, 478–478 (2009).

  41. 41.

    Aikin, A. C., Herman, J. R., Maier, E. J. & McQuillan, C. J. Atmospheric chemistry of ethane and ethylene. J. Geophys. Res. Oceans 87, 3105–3118 (1982).

  42. 42.

    Patra, P. K. et al. Observational evidence for interhemispheric hydroxyl-radical parity. Nature 513, 219–223 (2014).

  43. 43.

    Strode, S. A. et al. Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models. Atmos. Chem. Phys. 15, 11789–11805 (2015).

  44. 44.

    Rigby, M. et al. Role of atmospheric oxidation in recent methane growth. Proc. Natl Acad. Sci. USA 114, 5373–5377 (2017).

  45. 45.

    Naik, V. et al. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 5277–5298 (2013).

  46. 46.

    Søvde, O. A. et al. The chemical transport model Oslo CTM3. Geosci. Model Dev. 5, 1441–1469 (2012).

  47. 47.

    Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

  48. 48.

    Stohl, A., Forster, C., Frank, A., Seibert, P. & Wotawa, G. Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 5, 2461–2474 (2005).

  49. 49.

    Smith, M. L. et al. Airborne ethane observations in the Barnett Shale: quantification of ethane flux and attribution of methane emissions. Environ. Sci. Technol. 49, 8158–8166 (2015).

  50. 50.

    Carpenter, L. J. et al. Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory. J. Atmos. Chem. 67, 87–140 (2010).

  51. 51.

    Petrenko, V. V. et al. Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event. Nature 548, 443–446 (2017).

  52. 52.

    Schwietzke, S. et al. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538, 88–91 (2016).

  53. 53.

    Etiope, G., Lassey, K. R., Klusman, R. W. & Boschi, E. Reappraisal of the fossil methane budget and related emission from geologic sources. Geophys. Res. Lett. 35, L09307 (2008).

  54. 54.

    Rigby, M. et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, L22805 (2008).

  55. 55.

    Dlugokencky, E. J. et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 36, L18803 (2009).

  56. 56.

    Tzompa-Sosa, Z. A. et al. Revisiting global fossil fuel and biofuel emissions of ethane. J. Geophys. Res. Atmos. 122, 2493–2512 (2017).

  57. 57.

    Dalsøren, S. B. et al. Atmospheric methane evolution the last 40 years. Atmos. Chem. Phys. 16, 3099–3126 (2016).

  58. 58.

    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

  59. 59.

    van van Marle, M. J. E. et al. Historic global biomass burning emissions based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

  60. 60.

    Berglen, T., Berntsen, T., Isaksen, I. & Sundet, J. A global model of the coupled sulfur/oxidant chemistry in the troposphere: the sulfur cycle. J. Geophys. Res. Atmos. 109, D19310 (2004).

  61. 61.

    Sindelarova, K. et al. Global dataset of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 14, 9317–9341 (2014).

  62. 62.

    Pulles, T. et al. Reanalysis of the Tropospheric Chemical Composition Over the Past 40 years: A Long-term Global Modeling Study of Tropospheric Chemistry Funded Under the 5th EU Framework Programme EU-Contract No. EVK2-CT-2002-00170 (ed. Schultz, M.) (GEIA, Retro, 2008).

  63. 63.

    Bouwman, A. F. et al. A global high-resolution emission inventory for ammonia. Glob. Biogeochem. Cycles 11, 561–587 (1997).

  64. 64.

    Etiope, G. & Klusman, R. W. Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Glob. Planet. Change 72, 265–274 (2010).

  65. 65.

    Lamarque, J. F. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).

  66. 66.

    Atkinson, R. Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes. Atmos. Chem. Phys. 3, 2233–2307 (2003).

  67. 67.

    Prinn, R. G. et al. Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys. Res. Lett. 32, L07809 (2005).

  68. 68.

    Prather, M. J., Holmes, C. D. & Hsu, J. Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett. 39, L09803 (2012).

  69. 69.

    Rappenglück, B. et al. The first VOC intercomparison exercise within the Global Atmosphere Watch (GAW). Atmos. Environ. 40, 7508–7527 (2006).

  70. 70.

    Hoerger, C. C. et al. ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO GAW and EMEP observation networks. Atmos. Meas. Tech. 8, 2715–2736 (2015).

  71. 71.

    Plass-Dülmer, C., Schmidbauer, N., Slemr, J., Slemr, F. & D’Souza, H. European hydrocarbon intercomparison experiment AMOHA part 4: Canister sampling of ambient air. J. Geophys. Res. Atmos. 111, D04306 (2006).

  72. 72.

    Schultz, M. G. et al. The Global Atmosphere Watch reactive gases measurement network. Elem. Sci. Anth. 3, 67 (2015).

  73. 73.

    Helmig, D. et al. Volatile organic compounds in the global atmosphere. Eos 90, 513–514 (2009).

Download references

Acknowledgements

This research is funded by the Research Council of Norway through the MOCA (Methane Emissions from the Arctic Ocean to the Atmosphere: Present and Future Climate Effects) project (grant no. 225814). The Flexpart work was partially funded by the Nordic Center of Excellence eSTICC (eScience Tools for Investigating Climate Change in northern high latitudes) funded by Nordforsk (grant 57001). Furthermore, the conclusions of the paper is largely supported and strengthened by the use of globally distributed observational data and we acknowledge all data providers and the great efforts of EMEP, ACTRIS, NOAA ESRL/INSTAAR and The World Data Centre for Greenhouse Gases (WDCGG) under the WMO-GAW programme to make long-term measurements public and available. The Horizon 2020 research and innovation programme ACTRIS-2 Integrating Activities (grant agreement no. 654109) is acknowledged for the work with quality assurance and quality control of NMHC data in Europe. The VOC observations within the NOAA-INSTAAR GGGRN are supported in part by the US National Oceanic and Atmospheric Administration’s Climate Program Office’s AC4 Program, and quality control was supported in part by the US National Science Foundation grant no. 1108391. The GLOGOS dataset was kindly provided by CGG Geoconsulting. CGG Geoconsulting also provided us with a derived product from the Global Offshore Seepage Database (GOSD) indicating where offshore seepage occurs.

Author information

Author notes

    • Stig B. Dalsøren

    Present address: Institute of Marine Research, His, Norway

Affiliations

  1. CICERO, Oslo, Norway

    • Stig B. Dalsøren
    • , Gunnar Myhre
    •  & Øivind Hodnebrog
  2. NILU, Kjeller, Norway

    • Cathrine Lund Myhre
    • , Andreas Stohl
    • , Ignacio Pisso
    •  & Norbert Schmidbauer
  3. CIRES, University of Colorado, Boulder, CO, USA

    • Stefan Schwietzke
  4. NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, USA

    • Stefan Schwietzke
  5. International Institute for Applied Systems Analysis, Laxenburg, Austria

    • Lena Höglund-Isaksson
  6. Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA

    • Detlev Helmig
  7. Empa, Laboratory for Air Pollution/Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

    • Stefan Reimann
  8. IMT Lille Douai, SAGE, Université de Lille, Lille, France

    • Stéphane Sauvage
  9. Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, UK

    • Katie A. Read
    • , Lucy J. Carpenter
    • , Alastair C. Lewis
    •  & Shalini Punjabi
  10. Umweltbundesamt, Messnetzzentrale Langen, Langen, Germany

    • Markus Wallasch

Authors

  1. Search for Stig B. Dalsøren in:

  2. Search for Gunnar Myhre in:

  3. Search for Øivind Hodnebrog in:

  4. Search for Cathrine Lund Myhre in:

  5. Search for Andreas Stohl in:

  6. Search for Ignacio Pisso in:

  7. Search for Stefan Schwietzke in:

  8. Search for Lena Höglund-Isaksson in:

  9. Search for Detlev Helmig in:

  10. Search for Stefan Reimann in:

  11. Search for Stéphane Sauvage in:

  12. Search for Norbert Schmidbauer in:

  13. Search for Katie A. Read in:

  14. Search for Lucy J. Carpenter in:

  15. Search for Alastair C. Lewis in:

  16. Search for Shalini Punjabi in:

  17. Search for Markus Wallasch in:

Contributions

S.B.D., G.M. and Ø.H. designed the study with input from A.S., C.L.M. and I.P. S.B.D performed the simulations with the OsloCTM3 model, analysed the model results and performed the comparisons with measurement data. Ø.H. and G.M. provided assistance with the analysis and comparison studies. I.P performed the simulations with the Flexpart model and I.P. and A.S. analysed the output. S.Schwietzke and L.H.-I. provided the new emission datasets for fugitive fossil fuel emissions. S.B.D. developed gridded inventories for geologic emissions. C.L.M, D.H., S.R., S.S., N.S., K.A.R., L.J.C., A.C.L., S.P. and M.W. provided the observational data for ethane and propane. S.B.D. led the writing of the manuscript in close collaboration with G.M. and Ø.H. All authors contributed to the writing and review of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Stig B. Dalsøren.

Supplementary information

  1. Supplementary Information

    Supplementary Figures, Tables and Discussion.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0073-0