Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dryland photoautotrophic soil surface communities endangered by global change

Abstract

Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth’s terrestrial surface will decrease by about 25–40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Environmental factors controlling the suitability of biocrust habitats.
Fig. 2: Estimated biocrust coverage under current environmental conditions.
Fig. 3: Change of biocrust coverage by the year 2070 expected under future climate and land-use conditions.
Fig. 4: Expected relative change of the area covered by biocrusts (green bars) and natural vegetation (blue bars) by 2070 according to RCP2.6, RCP4.5, RCP6.0 and RCP8.5.

Similar content being viewed by others

References

  1. Weber, B., Büdel, B. & Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands Vol. 226 (Springer, 2016).

  2. Chamizo, S., Cantón, Y., Rodríguez-Caballero, E. & Domingo, F. Biocrusts positively affect the soil water balance in semiarid ecosystems.Ecohydrology9, 1208–1221 (2016).

    Google Scholar 

  3. Pointing, S. B. & Belnap, J. Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol.10, 551–562 (2012).

    Google Scholar 

  4. Elbert, W. et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci.5, 459–462 (2012).

    Google Scholar 

  5. Lenhart, K. et al. Nitrous oxide and methane emissions from cryptogamic covers. Glob. Change Biol.21, 3889–3900 (2015).

    Google Scholar 

  6. Porada, P., Pöschl, U., Kleidon, A., Beer, C. & Weber, B. Estimating global nitrous oxide emissions by lichens and bryophytes with a process-based productivity model. Biogeosciences14, 1593–1602 (2017).

    Google Scholar 

  7. Barger, N. N., Belnap, J., Ojima, D. S. & Mosier, A. NO gas loss from biologically crusted soils in Canyonlands National Park, Utah.Biogeochemistry75, 373–391 (2005).

    Google Scholar 

  8. Weber, B. et al. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc. Natl. Acad. Sci. USA112, 15384–15389 (2015).

    Google Scholar 

  9. Andreae, M. O. & Crutzen, P. J. Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science276, 1052–1058 (1997).

    Google Scholar 

  10. Kleffmann, J. et al. Daytime formation of nitrous acid: a major source of OH radicals in a forest. Geophys. Res. Lett.32, L05818 (2005).

    Google Scholar 

  11. Noffke, N., Christian, D., Wacey, D. & Hazen, R. M. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 Billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology13, 1103–1124 (2013).

    Google Scholar 

  12. Lenton, T. M. & Daines, S. J. Matworld — the biogeochemical effects of early life on land. New Phytol.215, 531–537 (2016).

    Google Scholar 

  13. Porada, P. et al. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nat. Commun.7, 12113 (2016).

    Google Scholar 

  14. Holland, H. D. The oxygenation of the atmosphere and oceans.Philos. Trans. Roy. Soc. B361, 903–915 (2006).

    Google Scholar 

  15. Crutzen, P. J. Geology of mankind. Nature415, 23–23 (2002).

    Google Scholar 

  16. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, Cambridge, 2013).

  17. Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science247, 1043–1048 (1990).

    Google Scholar 

  18. Concostrina-Zubiri, L. et al. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics.Ecol. Appl.24, 1863–1877 (2014).

    Google Scholar 

  19. Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P. & Potrafka, R. M. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science340, 1574–1577 (2013).

    Google Scholar 

  20. Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob. Change Biol.19, 3835–3847 (2013).

    Google Scholar 

  21. Reed, S. C. et al. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Change2, 752–755 (2012).

    Google Scholar 

  22. Weber, B. et al. A new approach for mapping of biological soil crusts in semidesert areas with hyperspectral imagery. Remote Sens. Environ.112, 2187–2201 (2008).

    Google Scholar 

  23. Rozenstein, O. & Karnieli, A. Identification and characterization of biological soil crusts in a sand dune desert environment across Israel–Egypt border using LWIR emittance spectroscopy. J. Arid Environ.112, 75–86 (2015).

    Google Scholar 

  24. Rodriguez-Caballero, E., Escribano, P. & Canton, Y. Advanced image processing methods as a tool to map and quantify different types of biological soil crust. ISPRS J. Photogramm. Remote Sens.90, 59–67 (2014).

    Google Scholar 

  25. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model.190, 231–259 (2006).

    Google Scholar 

  26. Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E. & Thuiller, W. Invasive species distribution models — how violating the equilibrium assumption can create new insights. Glob. Ecol. Biogeogr.21, 1126–1136 (2012).

    Google Scholar 

  27. Bowker, M. A., Belnap, J. & Miller, M. E. Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangel. Ecol. Manag.59, 519–529 (2006).

    Google Scholar 

  28. Fischer, T. & Subbotina, M. Climatic and soil texture threshold values for cryptogamic cover development: a meta analysis. Biologia69, 1520–1530 (2014).

    Google Scholar 

  29. Büdel, B. et al. Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers. Conserv.23, 1639–1658 (2014).

    Google Scholar 

  30. Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci.8, 441 (2015).

    Google Scholar 

  31. Fowler, D. et al. Effects of global change during the 21st century on the nitrogen cycle. Atmos. Chem. Phys.15, 13849–13893 (2015).

    Google Scholar 

  32. Ouyang, H. & Hu, C. Insight into climate change from the carbon exchange of biocrusts utilizing non-rainfall water. Sci. Rep.7, 2573 (2017).

    Google Scholar 

  33. Davies-Barnard, T., Valdes, P. J., Singarayer, J. S., Wiltshire, A. J. & Jones, C. D. Quantifying the relative importance of land cover change from climate and land use in the representative concentration pathways.Glob. Biogeochem. Cycles29, 842–853 (2015).

    Google Scholar 

  34. Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature502, 672–676 (2013).

    Google Scholar 

  35. Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun.7, 10373 (2016).

    Google Scholar 

  36. Chamizo, S. et al. Discriminating soil crust type, development stage and degree of disturbance in semiarid environments from their spectral characteristics. Eur. J. Soil Sci.63, 42–53 (2012).

    Google Scholar 

  37. Field, J. P. et al. The ecology of dust. Front. Ecol. Environ.8, 423–430 (2010).

    Google Scholar 

  38. Neff, J. C. et al. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci.1, 189–195 (2008).

    Google Scholar 

  39. Stanelle, T., Bey, I., Raddatz, T., Reick, C. & Tegen, I. Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. J. Geophys. Res. Atmos.119, 13526–13546 (2014).

    Google Scholar 

  40. Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on modis deep blue aerosol products. Rev. Geophys.50, RG3005 (2012).

    Google Scholar 

  41. Mulitza, S. et al. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature466, 226–228 (2010).

    Google Scholar 

  42. Bishop, J. K. B., Davis, R. E. & Sherman, J. T. Robotic Observations of dust storm enhancement of carbon biomass in the North Pacific.Science298, 817–821 (2002).

    Google Scholar 

  43. Evan, A. T., Flamant, C., Fiedler, S. & Doherty, O. An analysis of aeolian dust in climate models. Geophys. Res. Lett.41, 5996–6001 (2014).

    Google Scholar 

  44. Fröhlich-Nowoisky, J. et al. Bioaerosols in the Earth system: climate, health, and ecosystem interactions. Atmos. Res.182, 346–376 (2016).

    Google Scholar 

  45. Després, V. R. et al. Primary biological aerosol particles in the atmosphere: a review. Tellus B64, 15598 (2012).

    Google Scholar 

  46. Goudie, A. S. Desert dust and human health disorders. Environ. Int.63, 101–113 (2014).

    Google Scholar 

  47. Morris, C. E. et al. Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob. Change Biol.20, 341–351 (2014).

    Google Scholar 

  48. Williams, L. et al. Biological soil crusts of arctic Svalbard and of Livingston Island, Antarctica. Polar Biol.40, 399–411 (2016).

    Google Scholar 

  49. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol.25, 1965–1978 (2005).

    Google Scholar 

  50. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change109, 117–161 (2011).

    Google Scholar 

  51. Weber, B., Bowker, M., Zhang, Y. & Belnap, J. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B. et al.) 479–498 (Springer, 2016).

  52. Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography36, 1058–1069 (2013).

    Google Scholar 

  53. Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography29, 129–151 (2006).

    Google Scholar 

  54. Requena-Mullor, J. M. et al. Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach. Landsc. Ecol.29, 843–855 (2014).

    Google Scholar 

  55. Roura-Pascual, N. et al. Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proc. R. Soc. Lond. B271, 2527–2534 (2004).

    Google Scholar 

  56. Deblauwe, V., Barbier, N., Couteron, P., Lejeune, O. & Bogaert, J. The global biogeography of semi-arid periodic vegetation patterns. Glob. Ecol. Biogeogr.17, 715–723 (2008).

    Google Scholar 

  57. Verbruggen, H. et al. Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed Halimeda. Glob. Ecol. Biogeogr.18, 393–405 (2009).

    Google Scholar 

  58. Lara-Romero, C. et al. Habitat selection by European badgers in Mediterranean semi-arid ecosystems. J. Arid Environ.76, 43–48 (2012).

    Google Scholar 

  59. Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data.Ecol. Appl.19, 181–197 (2009).

    Google Scholar 

  60. Moreno-Amat, E. et al. Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecol. Model.312, 308–317 (2015).

    Google Scholar 

  61. Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl.21, 335–342 (2011).

    Google Scholar 

  62. Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography33, 607–611 (2010).

    Google Scholar 

  63. Cabra-Rivas, I., Saldaña, A., Castro-Díez, P. & Gallien, L. A multi-scale approach to identify invasion drivers and invaders’ future dynamics.Biol. Invasions18, 411–426 (2016).

    Google Scholar 

  64. Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography28, 385–393 (2005).

    Google Scholar 

  65. Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett.27, 861–874 (2006).

    Google Scholar 

  66. Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol.5, 1198–1205 (2014).

    Google Scholar 

  67. Eisenhauer, J. G. Regression through the Origin. Teach. Stat.25, 76–80 (2003).

    Google Scholar 

  68. Bowker, M. A. et al. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B. et al.) 173–197 (Springer, 2016).

  69. Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. USA112, 15684–15689 (2015).

    Google Scholar 

  70. Zelikova, T. J., Housman, D. C., Grote, E. E., Neher, D. A. & Belnap, J. Warming and increased precipitation frequency on the Colorado Plateau: Implications for biological soil crusts and soil processes. Plant. Soil355, 265–282 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Max Planck Society, the Paul Crutzen Nobel Laureate Fellowship, and the German Research Foundation (DFG-FOR 1525: INUIT; WE2393/2; BU666/11-17). J.B. is supported by USGS Climate and Land Use and Ecosystems programs. The authors want to thank J.M.R. Mullor for his help during spatial distribution modelling, C. Reick for his support during the modelling and data acquisition process, and J. Kesselmeier for his helpful internal review of our study. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. We would like to dedicate this publication to Professor Otto L. Lange.

Author information

Authors and Affiliations

Authors

Contributions

E.R.-C. and B.W. designed the study and analysed the data; E.R.-C. developed the models. J.B., B.B., M.O.A., P.C., U.P., B.W. and E.R.-C. contributed to interpreting the data. E.R-C., B.W. and U.P. wrote the paper.

Corresponding authors

Correspondence to Emilio Rodriguez-Caballero or Bettina Weber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary data tables, figures, and discussion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Caballero, E., Belnap, J., Büdel, B. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nature Geosci 11, 185–189 (2018). https://doi.org/10.1038/s41561-018-0072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0072-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing