The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland–Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Broecker, W. S. Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13, 119–121 (1998).

  2. 2.

    de Boer, A. M., Toggweiler, J. R. & Sigman, D. M. Atlantic dominance of the meridional overturning circulation. J. Phys. Oceano. 38, 435–450 (2008).

  3. 3.

    Toggweiler, R. & Samuels, B. Effect of Drake Passage on the global thermohaline circulation. Deep Sea Res. I 42, 477–500 (1995).

  4. 4.

    Abelson, M. & Erez, J. The onset of modern-like Atlantic meridional overturning circulation at the Eocene–Oligocene transition: evidence, causes, and possible implications for global cooling. Geochem. Geophys. Geosystems 18, 2177–2199 (2017).

  5. 5.

    Cramer, B. S., Toggweiler, J. R. T., Wright, J. D., Katz, M. E. & Miller, G. H. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, PA4216 (2009).

  6. 6.

    Davies, R., Cartwright, J., Pike, J. & Line, C. Early Oligocene initiation of North Atlantic Deep Water formation. Nature 410, 917–920 (2001).

  7. 7.

    Egloff, J. & Johnson, G. L. Morphology and structure of the Southern Labrador Sea. Can. J. Earth Sci. 12, 2111–2133 (1975).

  8. 8.

    Miller, K. G. & Tucholke, B. E. in Structure and Development of the Greenland–Scotland Ridge (eds Bott, M. H. P., Thiede, J., Saxov, S. & Talwani, M.) 549–589 (Plenum, New York, 1983).

  9. 9.

    Via, R. K. & Thomas, D. J. Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic. Geology 34, 441–444 (2006).

  10. 10.

    Borrelli, C., Cramer, B. S. & Katz, M. E. Bipolar Atlantic deepwater circulation in the middle–late Eocene: effects of Southern Ocean gateway openings. Paleoceanography 29, 308–327 (2014).

  11. 11.

    Boyle, P. R. et al. Cenozoic North Atlantic deep circulation history recorded in contourite drifts, offshore Newfoundland, Canada. Mar. Geol. 385, 185–203 (2017).

  12. 12.

    Hohbein, M. W., Sexton, P. F. & Cartwright, J. A. Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend. Geology 40, 255–258 (2012).

  13. 13.

    Langton, S. J., Rabideaux, N. M., Borrelli, C. & Katz, M. E. Southeastern Atlantic deep-water evolution during the late–middle Eocene to earliest Oligocene (Ocean Drilling Program Site 1263 and Deep Sea Drilling Project Site 366). Geosphere 12, 1032–1047 (2016).

  14. 14.

    Wright, J. D. & Miller, K. G. Control of North Atlantic Deep Water circulation by the Greenland–Scotland Ridge. Paleoceanography 11, 157–170 (1996).

  15. 15.

    Sijp, W. P., England, M. H. & Huber, M. Effect of the deepening of the Tasman Gateway on the global ocean. Paleoceanography 26, PA4207 (2011).

  16. 16.

    Elsworth, G., Galbraith, E., Halverson, G. & Yang, S. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nat. Geosci. 10, 213–216 (2017).

  17. 17.

    Tigchelaar, M., von der Heydt, A. S. & Dijkstra, H. A. A new mechanism for the two-step δ18O signal at the Eocene–Oligocene boundary. Clim. Past. 7, 235–247 (2010).

  18. 18.

    Zhang, Z. et al. Tropical seaways played a more important role than high latitude seaways in Cenozoic cooling. Clim. Past. 7, 801–813 (2011).

  19. 19.

    Huber, M. & Sloan, L. C. Heat transport, deep waters, and thermal gradients: coupled simulation of an Eocene greenhouse climate. Geophys. Res. Lett. 28, 3481–3484 (2001).

  20. 20.

    Pusz, A. E., Thunell, R. C. & Miller, K. G. Deep water temperature, carbonate ion, and ice volume changes across the Eocene–Oligocene climate transition. Paleoceanography 26, PA2205 (2011).

  21. 21.

    Firth, J. V., Eldrett, J. S., Harding, I. C., Coxall, H. K. & Wade, B. Integrated biomagnetochronology for the Palaeogene of ODP Hole 647A: implications for correlating palaeoceanographic events from high to low latitudes. Geol. Soc. Spec. Pub. 373, 29–78 (2013).

  22. 22.

    Coxall, H. K. & Wilson, P. A. Early Oligocene glaciation and productivity in the eastern equatorial Pacific; insights into global carbon cycling. Paleoceanography 26, PA2221 (2011).

  23. 23.

    Kroopnick, P. The distribution of 13C of ∑CO2 in the world oceans. Deep Sea Res. 32, 57–84 (1985).

  24. 24.

    Golovneva, L. B. Early Palaeogene floras of Spitsbergen and North Atlantic floristic exchange. Acta Univ. Carol. Geol. 44, 39–50 (2000).

  25. 25.

    Akhmetiev, M. A. & Beniamovski, V. N. Paleogene floral assemblages around epicontinental seas and straits in Northern Central Eurasia: proxies for climatic and paleogeographic evolution. Geol. Acta 7, 297–309 (2009).

  26. 26.

    Gleason, J. D. et al. Early to middle Eocene history of the Arctic Ocean from Nd–Sr isotopes in fossil fish debris, Lomonosov Ridge. Paleoceanography 24, PA2215 (2009).

  27. 27.

    O’Regan, A. M., Williams, C. J., Frey, K. E. & Jakobsson, M. A synthesis of the long-term paleoclimatic evolution of the Arctic. Oceanography 24, 66–80 (2011).

  28. 28.

    Pusz, A. E. et al. Stable isotopic response to late Eocene extraterrestrial impacts. Geol. Soc. Am. Special Papers 452, 83–95 (2009).

  29. 29.

    Arthur, M. A. et al. in Proc. Ocean Drilling Program Scientific Results Vol. 105 (eds Srivastava, S. P. et al.) 111–135 (Ocean Drilling Program, 1989).

  30. 30.

    Nielsen, S. B. et al. The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy–climate–erosion) hypothesis. J. Geodynam. 47, 72–95 (2009).

  31. 31.

    Lear, C. H., Bailey, T. R., Pearson, P. N. P., Coxall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene–Oligocene transition. Geology 36, 251–254 (2008).

  32. 32.

    Liu, L. et al. Global cooling during the Eocene–Oligocene climate transition. Science 323, 1187–1190 (2009).

  33. 33.

    Waddell, L M. & Moore, T. C. Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate. Paleoceanography 23, PA1S12 (2008).

  34. 34.

    Stärz, M., Jokat, W., Knorr, G. & Lohmann, G. Threshold in North Atlantic–Arctic Ocean circulation controlled by the subsidence of the Greenland–Scotland Ridge. Nat. Commun. 8, 15681 (2017).

  35. 35.

    Roberts, C. D., LeGrande, A. N. & Tripati, A. K. Climate sensitivity to Arctic seaway restriction during the early Paleogene. Earth Planet. Sci. Lett. 286, 576–585 (2009).

  36. 36.

    Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441, 606–609 (2006).

  37. 37.

    Kaminski, M. & Ortiz, S. The Eocene–Oligocene turnover of deep-water agglutinated foraminifera at ODP Site 647, Southern Labrador Sea (North Atlantic). Micropaleontology 60, 53–66 (2014).

  38. 38.

    Burton, K. W., Ling, H. F. & O’Nions, R. K. Closure of the Central American isthmus and its effect on deep-water formation in the North Atlantic. Nature 386, 382–385 (1997).

  39. 39.

    O’Nions, R. K., Frank, M., von Blanckenburg, F. & Ling, H. F. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans. Earth Planet. Sci. Lett. 155, 15–28 (1998).

  40. 40.

    Scher, H. D. & Martin, E. E. Timing and climatic consequences of the opening of Drake Passage. Science 312, 428–430 (2006).

  41. 41.

    Lambelet, M. et al. Neodymium isotopic composition and concentration in the western North Atlantic Ocean: results from the GEOTRACES GA02 section. Geochem. Cosmochim. Acta 177, 1–29 (2016).

  42. 42.

    Lacan, F. & Jeandel, C. Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water. Geochem. Geophys. Geosystems 6, Q1208 (2005).

  43. 43.

    Porcelli, D. et al. The distribution of neodymium isotopes in Arctic Ocean basins. Geochim. Cosmochim. Acta 73, 2645–2659 (2009).

  44. 44.

    Grandjean, P., Cappetta, H., Michard, A. & Albarede, F. The assessment of REE patterns and 143Nd/144Nd Nd ratios in fish remains. Earth Planet. Sci. Lett. 84, 181–196 (1987).

  45. 45.

    Stille, P. & Fischer, H. Secular variation in the isotopic composition of Nd in Tethys seawater. Geochim. Cosmochim. Acta 54, 3139–3145 (1990).

  46. 46.

    Kharin, G. S. & Lukashina, N. P. Paleogeography of the Norwegian–Greenland and northwestern European Sea basins in the Paleogene. Oceanology 50, 226–239 (2010).

  47. 47.

    Musatov, E. E. & Pogrebitskij, Y. E. Late Mesozoic–Cenozoic evolution of the Barents Sea and Kara Sea continental margins. Polarforschung 68, 283–290 (2000).

  48. 48.

    Andreasson, F. P., Schmitz, B. & Spiegler, D. Stable isotopic composition (delta18OCO3 2–, delta13C) of early Eocene fish-apatite from Hole 913B: an indicator of the early Norwegian–Greenland Sea paleosalinity. In Proc. Ocean Drilling Program Sci. Res. Vol. 151 (eds Thiede, J. et al.) 583–591 (Ocean Drilling Program, 1996).

  49. 49.

    Hegewald, A. & Jokat, W. Relative sea level variations in the Chukchi region — Arctic Ocean — since the late Eocene.Geophys. Res. Lett. 40, 2013 (2013).

  50. 50.

    Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).

  51. 51.

    Schmitz, W. J. & McCartney, M. S. On the North Atlantic Circulation. Rev. Geophys. 31, 29–49 (1993).

  52. 52.

    Laughton, A. S. et al. Shipboard reports of Sites 112, 118 and 119. In Initial Rep. Deep Sea Dril. Project Vol. 12 (eds Laughton, A. S. et al.) 161–253 (US Government Printing Office, Washington, 1972).

  53. 53.

    Norris, R. D. et al. In Proc. Integrated Ocean Drilling Program Vol. 342 (Integrated Ocean Drilling Program, 2014).

  54. 54.

    Miller, K. G. & Katz, M. E. Eocene benthic foraminiferal biofacies of the New Jersey Transect. In Initial Rep. Deep Sea Drill. Project Vol. 95 (eds Poag, C. W. et al.) 267–298 (US Government Printing Office, Washington, 1987).

  55. 55.

    Cande, S. C. & Kent, D. V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6095 (1995).

  56. 56.

    Zachos, J. C., Pagani, M., Sloan, L. C., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

  57. 57.

    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

  58. 58.

    Lear, C. H. et al. Neogene ice volume and ocean temperatures: insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography 30, 1437–1454 (2015).

  59. 59.

    Pearson, P. N. et al. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413, 481–487 (2001).

  60. 60.

    Katz, M. E. et al. Early Cenozoic benthic foraminiferal isotopes: species reliability and interspecies correction factors. Paleoceanography 18, 1024 (2003).

  61. 61.

    Rathburn, A. E., Corliss, B. H., Tappa, K. D. & Lohmann, K. C. Comparisons of the ecology and stable isotopic compositions of living (stained) benthic foraminifera from the Sulu and South China Seas. Deep Sea Res. I 43, 1617–1646 (1996).

  62. 62.

    Boyle, E. A. Manganese carbonate overgrowths on foraminifera tests. Geochim. Cosmochim. Acta 47, 1815–1819 (1983).

  63. 63.

    Boyle, E. A. & Keigwin, L. D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76, 135–150 (1985).

  64. 64.

    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosystems 4, 8407 (2003).

  65. 65.

    Marchitto, T. M. et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera. Geochim. Cosmochim. Acta 130, 1–11 (2014).

  66. 66.

    Mueller-Lupp, T., Erlenkueser, H. & Bauch, H. A. Seasonal and interannual variability of Siberian river discharge in the Laptev Sea inferred from stable isotopes in modern bivalves. Boreas 32, 292–303 (2003).

  67. 67.

    Fairbanks, R. G., Charles, C. D. & Wright, J. D. Radiocarbon After Four Decades 473–500 (Springer, New York, 1992).

  68. 68.

    Martin, E. E. & Haley, B. A. Fossil fish teeth as proxies for seawater Sr and Nd isotopes. Geochim. Cosmochim. Acta 64, 835–847 (2000).

  69. 69.

    Pin, C. & Zalduegui, J. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).

  70. 70.

    Chavagnac, V. et al. Towards the development of a fossil bone geochemical standard: an inter-laboratory study. Anal. Chim. Acta 599, 177–190 (2007).

  71. 71.

    Scher, H. D. & Delaney, M. L. Breaking the glass ceiling for high resolution Nd isotope records in early Cenozoic paleoceanography. Chem. Geol. 269, 329–338 (2010).

  72. 72.

    Thomas, D. J., Bralower, T. J. & Jones, C. E. Neodymium isotopic reconstruction of late Paleocene–early Eocene thermohaline circulation. Earth Planet. Sci. Lett. 209, 309–322 (2003).

  73. 73.

    Martin, E. E. & Scher, H. A Nd isotopic study of southern sourced waters and Indonesian throughflow at intermediate depths in the Cenozoic Indian Ocean. Geochem. Geophys. Geosystems 7, Q09N02 (2006).

  74. 74.

    Moiroud, M. et al. Evolution of the neodymium isotopic signature of neritic seawater on a northwestern Pacific margin: new constrains on possible end-members for the composition of deep-water masses in the Late Cretaceous ocean. Chem. Geol. 356, 160–170 (2013).

  75. 75.

    Baatsen, M. et al. A generalised approach to reconstructing geographical boundary conditions for palaeoclimate modelling. Clim. Past. 12, 4917–4942 (2016).

Download references


Samples were provided by the International Ocean Discovery Program (IODP), which includes the predecessors the International Ocean Drilling Program (IODP), Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP). We thank J. Becker and M. Spencer for technical assistance with the stable isotopes, and H. Öste and E. Axelsson for preparing the core samples. H.K.C. was supported by a Royal Society Research Fellowship, Swedish Funding agency (VR) no. DNR 2008-2859 and the Bolin Centre for Climate Research, and T.vdF. by NERC Grants NE/I006257/1 and NE/L004607/1. K.K.S. acknowledges financial support from the Danish Council for Independent Research/Natural Sciences (DFF/FNU; Grant 11-107497).

Author information


  1. Department of Geological Sciences, Stockholm University, Stockholm, Sweden

    • Helen K. Coxall
    • , Matt O’Regan
    • , Agatha M. de Boer
    •  & Jan Backman
  2. Department of Earth Science and Engineering, Imperial College London, London, UK

    • Claire E. Huck
    •  & Tina van de Flierdt
  3. Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK

    • Claire E. Huck
  4. Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, USA

    • Matthew Huber
  5. Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA

    • Matthew Huber
  6. School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK

    • Caroline H. Lear
  7. Department of Earth Sciences, University of Zaragoza, Zaragoza, Spain

    • Alba Legarda-Lisarri
  8. Geological Survey of Denmark and Greenland, GEUS, Copenhagen K, Denmark

    • Kasia K. Sliwinska
  9. Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands

    • Kasia K. Sliwinska
  10. Earth & Planetary Sciences Department, University of California, Santa Cruz, USA

    • James C. Zachos


  1. Search for Helen K. Coxall in:

  2. Search for Claire E. Huck in:

  3. Search for Matthew Huber in:

  4. Search for Caroline H. Lear in:

  5. Search for Alba Legarda-Lisarri in:

  6. Search for Matt O’Regan in:

  7. Search for Kasia K. Sliwinska in:

  8. Search for Tina van de Flierdt in:

  9. Search for Agatha M. de Boer in:

  10. Search for James C. Zachos in:

  11. Search for Jan Backman in:


H.K.C. and J.B. conceived the project. H.K.C. directed the research, generated the stable isotope data for Sites 112, 647 and U1411, compiled the proxy records and led writing of the paper. A.L.-L. produced the new Site 612 data and age model. C.H.L. conducted the trace metal analysis. C.E.H. produced and interpreted the Nd data with the help of T.vdF. M.O. produced the palaeogeographic map for Fig. 1 and conducted the subsidence modelling. K.K.S. helped produce the Site 647 age model. M.H. helped with the interpretative framework and produced the interpolated Atlantic depth isotopic transects and maps. J.C.Z. and A.M.d.B. helped interpret the data. All of the authors contributed to writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Helen K. Coxall.

Supplementary information

  1. Supplementary Information

    Supplementary discussion and figures

  2. Supplementary Data 1

    Stable isotope data

  3. Supplementary Data 2

    Trace-metal data and palaeotemperatures

About this article

Publication history






Further reading