Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation

Abstract

The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland–Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Site locations of the sections included in this study.
Fig. 2: New and published Atlantic benthic δ18O and δ13C (Cibicidoides adjusted (Methods)).
Fig. 3: Sites 647 and U1411 multiproxy data.
Fig. 4: Depth–latitude compilation of Atlantic benthic δ13C and δ18O during the late Eocene to early Oligocene, constructed using natural neighbour interpolation.

Similar content being viewed by others

References

  1. Broecker, W. S. Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography13, 119–121 (1998).

    Google Scholar 

  2. de Boer, A. M., Toggweiler, J. R. & Sigman, D. M. Atlantic dominance of the meridional overturning circulation. J. Phys. Oceano.38, 435–450 (2008).

    Google Scholar 

  3. Toggweiler, R. & Samuels, B. Effect of Drake Passage on the global thermohaline circulation. Deep Sea Res. I42, 477–500 (1995).

    Google Scholar 

  4. Abelson, M. & Erez, J. The onset of modern-like Atlantic meridional overturning circulation at the Eocene–Oligocene transition: evidence, causes, and possible implications for global cooling. Geochem. Geophys. Geosystems18, 2177–2199 (2017).

    Google Scholar 

  5. Cramer, B. S., Toggweiler, J. R. T., Wright, J. D., Katz, M. E. & Miller, G. H. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography24, PA4216 (2009).

    Google Scholar 

  6. Davies, R., Cartwright, J., Pike, J. & Line, C. Early Oligocene initiation of North Atlantic Deep Water formation. Nature410, 917–920 (2001).

    Google Scholar 

  7. Egloff, J. & Johnson, G. L. Morphology and structure of the Southern Labrador Sea. Can. J. Earth Sci.12, 2111–2133 (1975).

    Google Scholar 

  8. Miller, K. G. & Tucholke, B. E. in Structure and Development of the Greenland–Scotland Ridge (eds Bott, M. H. P., Thiede, J., Saxov, S. & Talwani, M.) 549–589 (Plenum, New York, 1983).

  9. Via, R. K. & Thomas, D. J. Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic. Geology34, 441–444 (2006).

    Google Scholar 

  10. Borrelli, C., Cramer, B. S. & Katz, M. E. Bipolar Atlantic deepwater circulation in the middle–late Eocene: effects of Southern Ocean gateway openings. Paleoceanography29, 308–327 (2014).

    Google Scholar 

  11. Boyle, P. R. et al. Cenozoic North Atlantic deep circulation history recorded in contourite drifts, offshore Newfoundland, Canada. Mar. Geol.385, 185–203 (2017).

    Google Scholar 

  12. Hohbein, M. W., Sexton, P. F. & Cartwright, J. A. Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend. Geology40, 255–258 (2012).

    Google Scholar 

  13. Langton, S. J., Rabideaux, N. M., Borrelli, C. & Katz, M. E. Southeastern Atlantic deep-water evolution during the late–middle Eocene to earliest Oligocene (Ocean Drilling Program Site 1263 and Deep Sea Drilling Project Site 366). Geosphere12, 1032–1047 (2016).

    Google Scholar 

  14. Wright, J. D. & Miller, K. G. Control of North Atlantic Deep Water circulation by the Greenland–Scotland Ridge. Paleoceanography11, 157–170 (1996).

    Google Scholar 

  15. Sijp, W. P., England, M. H. & Huber, M. Effect of the deepening of the Tasman Gateway on the global ocean. Paleoceanography26, PA4207 (2011).

    Google Scholar 

  16. Elsworth, G., Galbraith, E., Halverson, G. & Yang, S. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nat. Geosci.10, 213–216 (2017).

    Google Scholar 

  17. Tigchelaar, M., von der Heydt, A. S. & Dijkstra, H. A. A new mechanism for the two-step δ18O signal at the Eocene–Oligocene boundary. Clim. Past.7, 235–247 (2010).

    Google Scholar 

  18. Zhang, Z. et al. Tropical seaways played a more important role than high latitude seaways in Cenozoic cooling. Clim. Past.7, 801–813 (2011).

    Google Scholar 

  19. Huber, M. & Sloan, L. C. Heat transport, deep waters, and thermal gradients: coupled simulation of an Eocene greenhouse climate. Geophys. Res. Lett.28, 3481–3484 (2001).

    Google Scholar 

  20. Pusz, A. E., Thunell, R. C. & Miller, K. G. Deep water temperature, carbonate ion, and ice volume changes across the Eocene–Oligocene climate transition. Paleoceanography26, PA2205 (2011).

    Google Scholar 

  21. Firth, J. V., Eldrett, J. S., Harding, I. C., Coxall, H. K. & Wade, B. Integrated biomagnetochronology for the Palaeogene of ODP Hole 647A: implications for correlating palaeoceanographic events from high to low latitudes. Geol. Soc. Spec. Pub.373, 29–78 (2013).

    Google Scholar 

  22. Coxall, H. K. & Wilson, P. A. Early Oligocene glaciation and productivity in the eastern equatorial Pacific; insights into global carbon cycling. Paleoceanography26, PA2221 (2011).

    Google Scholar 

  23. Kroopnick, P. The distribution of 13C of ∑CO2 in the world oceans. Deep Sea Res.32, 57–84 (1985).

    Google Scholar 

  24. Golovneva, L. B. Early Palaeogene floras of Spitsbergen and North Atlantic floristic exchange. Acta Univ. Carol. Geol.44, 39–50 (2000).

    Google Scholar 

  25. Akhmetiev, M. A. & Beniamovski, V. N. Paleogene floral assemblages around epicontinental seas and straits in Northern Central Eurasia: proxies for climatic and paleogeographic evolution. Geol. Acta7, 297–309 (2009).

    Google Scholar 

  26. Gleason, J. D. et al. Early to middle Eocene history of the Arctic Ocean from Nd–Sr isotopes in fossil fish debris, Lomonosov Ridge. Paleoceanography24, PA2215 (2009).

    Google Scholar 

  27. O’Regan, A. M., Williams, C. J., Frey, K. E. & Jakobsson, M. A synthesis of the long-term paleoclimatic evolution of the Arctic. Oceanography24, 66–80 (2011).

    Google Scholar 

  28. Pusz, A. E. et al. Stable isotopic response to late Eocene extraterrestrial impacts. Geol. Soc. Am. Special Papers452, 83–95 (2009).

  29. Arthur, M. A. et al. inProc. Ocean Drilling Program Scientific Results Vol. 105 (eds Srivastava, S. P. et al.) 111–135 (Ocean Drilling Program, 1989).

  30. Nielsen, S. B. et al. The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy–climate–erosion) hypothesis. J. Geodynam.47, 72–95 (2009).

    Google Scholar 

  31. Lear, C. H., Bailey, T. R., Pearson, P. N. P., Coxall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene–Oligocene transition.Geology36, 251–254 (2008).

    Google Scholar 

  32. Liu, L. et al. Global cooling during the Eocene–Oligocene climate transition. Science323, 1187–1190 (2009).

    Google Scholar 

  33. Waddell, L M. & Moore, T. C. Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate. Paleoceanography23, PA1S12 (2008).

    Google Scholar 

  34. Stärz, M., Jokat, W., Knorr, G. & Lohmann, G. Threshold in North Atlantic–Arctic Ocean circulation controlled by the subsidence of the Greenland–Scotland Ridge. Nat. Commun.8, 15681 (2017).

    Google Scholar 

  35. Roberts, C. D., LeGrande, A. N. & Tripati, A. K. Climate sensitivity to Arctic seaway restriction during the early Paleogene. Earth Planet. Sci. Lett.286, 576–585 (2009).

    Google Scholar 

  36. Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature441, 606–609 (2006).

    Google Scholar 

  37. Kaminski, M. & Ortiz, S. The Eocene–Oligocene turnover of deep-water agglutinated foraminifera at ODP Site 647, Southern Labrador Sea (North Atlantic). Micropaleontology60, 53–66 (2014).

    Google Scholar 

  38. Burton, K. W., Ling, H. F. & O’Nions, R. K. Closure of the Central American isthmus and its effect on deep-water formation in the North Atlantic. Nature386, 382–385 (1997).

    Google Scholar 

  39. O’Nions, R. K., Frank, M., von Blanckenburg, F. & Ling, H. F. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans. Earth Planet. Sci. Lett.155, 15–28 (1998).

    Google Scholar 

  40. Scher, H. D. & Martin, E. E. Timing and climatic consequences of the opening of Drake Passage. Science312, 428–430 (2006).

    Google Scholar 

  41. Lambelet, M. et al. Neodymium isotopic composition and concentration in the western North Atlantic Ocean: results from the GEOTRACES GA02 section. Geochem. Cosmochim. Acta177, 1–29 (2016).

    Google Scholar 

  42. Lacan, F. & Jeandel, C. Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water. Geochem. Geophys. Geosystems6, Q1208 (2005).

    Google Scholar 

  43. Porcelli, D. et al. The distribution of neodymium isotopes in Arctic Ocean basins. Geochim. Cosmochim. Acta73, 2645–2659 (2009).

    Google Scholar 

  44. Grandjean, P., Cappetta, H., Michard, A. & Albarede, F. The assessment of REE patterns and 143Nd/144Nd Nd ratios in fish remains. Earth Planet. Sci. Lett.84, 181–196 (1987).

    Google Scholar 

  45. Stille, P. & Fischer, H. Secular variation in the isotopic composition of Nd in Tethys seawater. Geochim. Cosmochim. Acta54, 3139–3145 (1990).

    Google Scholar 

  46. Kharin, G. S. & Lukashina, N. P. Paleogeography of the Norwegian–Greenland and northwestern European Sea basins in the Paleogene.Oceanology50, 226–239 (2010).

    Google Scholar 

  47. Musatov, E. E. & Pogrebitskij, Y. E. Late Mesozoic–Cenozoic evolution of the Barents Sea and Kara Sea continental margins. Polarforschung68, 283–290 (2000).

    Google Scholar 

  48. Andreasson, F. P., Schmitz, B. & Spiegler, D. Stable isotopic composition (delta18OCO3 2–, delta13C) of early Eocene fish-apatite from Hole 913B: an indicator of the early Norwegian–Greenland Sea paleosalinity. InProc. Ocean Drilling Program Sci. Res. Vol. 151 (eds Thiede, J. et al.) 583–591 (Ocean Drilling Program, 1996).

  49. Hegewald, A. & Jokat, W. Relative sea level variations in the Chukchi region — Arctic Ocean — since the late Eocene.Geophys. Res. Lett.40, 2013 (2013).

    Google Scholar 

  50. Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature533, 380–384 (2016).

    Google Scholar 

  51. Schmitz, W. J. & McCartney, M. S. On the North Atlantic Circulation. Rev. Geophys.31, 29–49 (1993).

    Google Scholar 

  52. Laughton, A. S. et al. Shipboard reports of Sites 112, 118 and 119. In Initial Rep. Deep Sea Dril. Project Vol. 12 (eds Laughton, A. S. et al.) 161–253 (US Government Printing Office, Washington, 1972).

  53. Norris, R. D. et al. In Proc. Integrated Ocean Drilling Program Vol. 342 (Integrated Ocean Drilling Program, 2014).

  54. Miller, K. G. & Katz, M. E. Eocene benthic foraminiferal biofacies of the New Jersey Transect. In Initial Rep. Deep Sea Drill. Project Vol. 95 (eds Poag, C. W. et al.) 267–298 (US Government Printing Office, Washington, 1987).

  55. Cande, S. C. & Kent, D. V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res.100, 6093–6095 (1995).

    Google Scholar 

  56. Zachos, J. C., Pagani, M., Sloan, L. C., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present.Science292, 686–693 (2001).

    Google Scholar 

  57. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature451, 279–283 (2008).

    Google Scholar 

  58. Lear, C. H. et al. Neogene ice volume and ocean temperatures: insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography30, 1437–1454 (2015).

    Google Scholar 

  59. Pearson, P. N. et al. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature413, 481–487 (2001).

    Google Scholar 

  60. Katz, M. E. et al. Early Cenozoic benthic foraminiferal isotopes: species reliability and interspecies correction factors. Paleoceanography18, 1024 (2003).

    Google Scholar 

  61. Rathburn, A. E., Corliss, B. H., Tappa, K. D. & Lohmann, K. C. Comparisons of the ecology and stable isotopic compositions of living (stained) benthic foraminifera from the Sulu and South China Seas. Deep Sea Res. I43, 1617–1646 (1996).

    Google Scholar 

  62. Boyle, E. A. Manganese carbonate overgrowths on foraminifera tests.Geochim. Cosmochim. Acta47, 1815–1819 (1983).

    Google Scholar 

  63. Boyle, E. A. & Keigwin, L. D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett.76, 135–150 (1985).

    Google Scholar 

  64. Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosystems4, 8407 (2003).

    Google Scholar 

  65. Marchitto, T. M. et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera. Geochim. Cosmochim. Acta130, 1–11 (2014).

    Google Scholar 

  66. Mueller-Lupp, T., Erlenkueser, H. & Bauch, H. A. Seasonal and interannual variability of Siberian river discharge in the Laptev Sea inferred from stable isotopes in modern bivalves. Boreas32, 292–303 (2003).

    Google Scholar 

  67. Fairbanks, R. G., Charles, C. D. & Wright, J. D. Radiocarbon After Four Decades 473–500 (Springer, New York, 1992).

  68. Martin, E. E. & Haley, B. A. Fossil fish teeth as proxies for seawater Sr and Nd isotopes. Geochim. Cosmochim. Acta64, 835–847 (2000).

    Google Scholar 

  69. Pin, C. & Zalduegui, J. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta339, 79–89 (1997).

    Google Scholar 

  70. Chavagnac, V. et al. Towards the development of a fossil bone geochemical standard: an inter-laboratory study. Anal. Chim. Acta599, 177–190 (2007).

    Google Scholar 

  71. Scher, H. D. & Delaney, M. L. Breaking the glass ceiling for high resolution Nd isotope records in early Cenozoic paleoceanography. Chem. Geol.269, 329–338 (2010).

    Google Scholar 

  72. Thomas, D. J., Bralower, T. J. & Jones, C. E. Neodymium isotopic reconstruction of late Paleocene–early Eocene thermohaline circulation.Earth Planet. Sci. Lett.209, 309–322 (2003).

    Google Scholar 

  73. Martin, E. E. & Scher, H. A Nd isotopic study of southern sourced waters and Indonesian throughflow at intermediate depths in the Cenozoic Indian Ocean. Geochem. Geophys. Geosystems7, Q09N02 (2006).

    Google Scholar 

  74. Moiroud, M. et al. Evolution of the neodymium isotopic signature of neritic seawater on a northwestern Pacific margin: new constrains on possible end-members for the composition of deep-water masses in the Late Cretaceous ocean. Chem. Geol.356, 160–170 (2013).

    Google Scholar 

  75. Baatsen, M. et al. A generalised approach to reconstructing geographical boundary conditions for palaeoclimate modelling. Clim. Past.12, 4917–4942 (2016).

    Google Scholar 

Download references

Acknowledgements

Samples were provided by the International Ocean Discovery Program (IODP), which includes the predecessors the International Ocean Drilling Program (IODP), Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP). We thank J. Becker and M. Spencer for technical assistance with the stable isotopes, and H. Öste and E. Axelsson for preparing the core samples. H.K.C. was supported by a Royal Society Research Fellowship, Swedish Funding agency (VR) no. DNR 2008-2859 and the Bolin Centre for Climate Research, and T.vdF. by NERC Grants NE/I006257/1 and NE/L004607/1. K.K.S. acknowledges financial support from the Danish Council for Independent Research/Natural Sciences (DFF/FNU; Grant 11-107497).

Author information

Authors and Affiliations

Authors

Contributions

H.K.C. and J.B. conceived the project. H.K.C. directed the research, generated the stable isotope data for Sites 112, 647 and U1411, compiled the proxy records and led writing of the paper. A.L.-L. produced the new Site 612 data and age model. C.H.L. conducted the trace metal analysis. C.E.H. produced and interpreted the Nd data with the help of T.vdF. M.O. produced the palaeogeographic map for Fig. 1 and conducted the subsidence modelling. K.K.S. helped produce the Site 647 age model. M.H. helped with the interpretative framework and produced the interpolated Atlantic depth isotopic transects and maps. J.C.Z. and A.M.d.B. helped interpret the data. All of the authors contributed to writing the manuscript.

Corresponding author

Correspondence to Helen K. Coxall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion and figures

Supplementary Data 1

Stable isotope data

Supplementary Data 2

Trace-metal data and palaeotemperatures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coxall, H.K., Huck, C.E., Huber, M. et al. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation. Nature Geosci 11, 190–196 (2018). https://doi.org/10.1038/s41561-018-0069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0069-9

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene