Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread distribution of OH/H2O on the lunar surface inferred from spectral data

Abstract

Remote-sensing data from lunar orbiters have revealed spectral features consistent with the presence of OH or H2O on the lunar surface. Analyses of data from the Moon Mineralogy Mapper spectrometer onboard the Chandrayaan-1 spacecraft have suggested that OH/H2O is recycled on diurnal timescales and persists only at high latitudes. However, the spatial distribution and temporal variability of the OH/H2O, as well as its source, remain uncertain. Here we incorporate a physics-based thermal correction into analysis of reflectance spectra from the Moon Mineralogy Mapper and find that prominent absorption features consistent with OH/H2O can be present at all latitudes, local times and surface types examined. This suggests the widespread presence of OH/H2O on the lunar surface without significant diurnal migration. We suggest that the spectra are consistent with the production of OH in space-weathered materials by the solar wind implantation of H+ and formation of OH at crystal defect sites, as opposed to H2O sourced from the lunar interior. Regardless of the specific composition or formation mechanism, we conclude that OH/H2O can be present on the Moon under thermal conditions more wide-ranging than previously recognized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example spectra showing the effects of various thermal corrections on the shape and depth of the 3 μm absorption.
Fig. 2: Normalized reflectance of lunar highlands surfaces over a range of solar incidence angles (12–84°).
Fig. 3: Normalized M3 reflectance spectra of the central peak and crater floor of Bullialdus Crater and Gruithuisen Delta dome.
Fig. 4: Reiner Gamma and Mare Ingenii lunar swirl region bright and dark surface reflectance spectra.

Similar content being viewed by others

References

  1. Pieters, C. M. et al. Character and spatial distribution of OH/H2O on the surface of the moon seen by M3 on Chandrayaan-1. Science326, 568–572 (2009).

    Article  Google Scholar 

  2. Sunshine, J. M. et al. Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science326, 565–568 (2009).

    Article  Google Scholar 

  3. Clark, R. N. Detection of adsorbed water and hydroxyl on the moon.Science326, 562–564 (2009).

    Article  Google Scholar 

  4. McCord, T. B., et al. Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the moon mineralogy mapper (M3). J. Geophys. Res. 116, E00G05 (2011).

  5. Kramer, G. Y., et al. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies. J. Geophys. Res. 116, E00G18 (2011).

  6. Klima, R., Cahill, J., Hagerty, J. & Lawrence, D. Remote detection of magmatic water in Bullialdus Crater on the Moon. Nat. Geosci.6, 737–741 (2013).

    Article  Google Scholar 

  7. Li, S. & Milliken, R. E. An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and diviner temperatures. J. Geophys. Res.121, 2081–2107 (2016).

    Article  Google Scholar 

  8. Wöhler, C. A. et al. Temperature regime and water/hydroxyl behavior in the crater boguslawsky on the moon. Icarus285, 118–136 (2017).

    Article  Google Scholar 

  9. Bandfield, J. L. & Edwards, C. S. Derivation of martian surface slope characteristics from directional thermal infrared radiometry. Icarus193, 139–157 (2008).

    Article  Google Scholar 

  10. Bandfield, J. L., Hayne, P. O., Williams, J.-P., Greenhagen, B. T. & Paige, D. A. Lunar surface roughness derived from LRO Diviner Radiometer observations. Icarus248, 357–372 (2015).

    Article  Google Scholar 

  11. Clark, R. N., Pieters, C. M., Green, R. O., Boardman, J. W. & Petro, N. E. Thermal removal from near-infrared imaging spectroscopy data of the Moon. J. Geophys. Res. 116, E00G16 (2011).

  12. Clark, R. N. Spectral properties of mixtures of montmorillonite and dark grains — implications for remote sensing minerals containing chemically and physically adsorbed water. J. Geophys. Res.88, 10635–10644 (1983).

  13. Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, Cambridge, 1993).

  14. Milliken, R. E. & Mustard, J. F. Estimating the water content of hydrated minerals using reflectance spectroscopy. I. Effects of darkening agents and low-albedo materials. Icarus189, 550–573 (2007).

    Article  Google Scholar 

  15. Gaddis, L. R., Staid, M. I., Tyburczy, J. A., Hawke, B. R. & Petro, N. E. Compositional analyses of lunar pyroclastic deposits. Icarus161, 262–280 (2003).

    Article  Google Scholar 

  16. Head, J. W. & Wilson, L. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations). Icarus283, 176–223 (2017).

  17. Head, J. W. & McCord, T. B. Imbrian-age highland volcanism on the moon — the Gruithuisen and Mairan domes. Science199, 1433–1436 (1978).

  18. Wilson, L. & Head, J. W. Lunar Gruithuisen and Mairan domes: rheology and mode of emplacement. J. Geophys. Res. 108, E001909 (2003).

  19. Glotch, T. D. et al. Highly silicic compositions on the moon.Science329, 1510–1513 (2010).

    Article  Google Scholar 

  20. Ivanov, M. A., Head, J. W. & Bystrov, A. The lunar gruithuisen silicic extrusive domes: topographic configuration, morphology, ages, and internal structure. Icarus273, 262–283 (2016).

    Article  Google Scholar 

  21. Hemingway, D. J., Garrick-Bethell, I. & Kreslavsky, M. A. Latitudinal variation in spectral properties of the lunar maria and implications for space weathering. Icarus261, 66–79 (2015).

    Article  Google Scholar 

  22. Glotch, T. D. et al. Formation of lunar swirls by magnetic field standoff of the solar wind. Nat. Commun.6, 6189 (2015).

    Article  Google Scholar 

  23. Hood, L. L. & Schubert, G. Lunar magnetic anomalies and surface optical properties. Science208, 49–51 (1980).

    Article  Google Scholar 

  24. Dyar, M. D., Hibbitts, C. A. & Orlando, T. M. Mechanisms for incorporation of hydrogen in and on terrestrial planetary surfaces. Icarus208, 425–437 (2010).

    Article  Google Scholar 

  25. Bradley, J. P. et al. Detection of solar wind-produced water in irradiated rims on silicate minerals. Proc. Natl Acad. Sci. USA111, 1732–1735 (2014).

    Article  Google Scholar 

  26. Poston, M. J. et al. Water interactions with micronized lunar surrogates JSC-1A and albite under ultra-high vacuum with application to lunar observations. J. Geophys. Res.118, 105–115 (2013).

    Article  Google Scholar 

  27. Hibbitts, C. A. et al. Thermal stability of water and hydroxyl on the surface of the Moon from temperature-programmed desorption measurements of lunar analog materials. Icarus213, 64–72 (2011).

    Article  Google Scholar 

  28. Mitchell, E. H. et al. Ultraviolet photodesorption as a driver of water migration on the lunar surface. Planet. Space Sci. 89, 42–46 (2013).

  29. Poston, M. J. et al. Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501. Icarus255, 24–29 (2015).

    Article  Google Scholar 

  30. Ichimura, A. S., Zent, A. P., Quinn, R. C., Sanchez, M. R. & Taylor, L. A. Hydroxyl (OH) production on airless planetary bodies: evidence from H+/D+ ion-beam experiments. Earth Planet. Sci. Lett.345, 90–94 (2012).

  31. Farrell, W. M., Hurley, D. M., Esposito, V. J., McLain, J. L. & Zimmerman, M. I. The statistical mechanics of solar wind hydroxylation at the Moon, within lunar magnetic anomalies, and at Phobos. J. Geophys. Res.122, 269–289 (2017).

    Article  Google Scholar 

  32. Farrell, W. M., Hurley, D. M. & Zimmerman, M. I. Solar wind implantation into lunar regolith: hydrogen retention in a surface with defects.Icarus255, 116–126 (2015).

  33. Starukhina, L. Water detection on atmosphereless celestial bodies: alternative explanations of the observations. J. Geophys. Res.106, 14701–14710 (2001).

  34. Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature454, 192–195 (2008).

    Article  Google Scholar 

  35. McCubbin, F. M. et al. Nominally hydrous magmatism on the Moon.Proc. Natl Acad. Sci. USA107, 11223–11228 (2010).

    Article  Google Scholar 

  36. Greenwood, J. P. et al. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat. Geosci.4, 79–82 (2011).

    Article  Google Scholar 

  37. Milliken, R. E. & Li, S. Remote detection of widespread indigenous water in lunar pyroclastic deposits. Nat. Geosci.10, 561–565 (2017).

    Article  Google Scholar 

  38. Rivkin, A. S. et al. 3 μm spectrophotometric survey of M- and E-class asteroids. Icarus117, 90–100 (1995).

    Article  Google Scholar 

  39. Barker, M. K. et al. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus273, 346–355 (2016).

    Article  Google Scholar 

  40. Scholten, F. J. et al. GLD100: The near-global lunar 100m raster DTM from LROC WAC stereo image data. J. Geophys. Res. 117, E00H17 (2012).

  41. Keihm, S. J. Interpretation of the lunar microwave brightness temperature spectrum — feasibility of orbital heat flow mapping. Icarus60, 568–589 (1984).

  42. Vasavada, A. R. et al. Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment. J. Geophys. Res. 117 (2012).

  43. Helfenstein, P. & Shepard, M. K. Submillimeter-scale topography of the lunar regolith. Icarus141, 107–131 (1999).

    Article  Google Scholar 

  44. Shepard, M. K., Brackett, R. A. & Arvidson, R. E. Self-affine (fractal) topography: surface parameterization and radar scattering. J. Geophys. Res.100, 11709–11718 (1995).

  45. Smith, B. G. Lunar surface roughness: shadowing and thermal emission. J. Geophys. Res.72, 4059–4067 (1967).

  46. Besse, S. et al. A visible and near-infrared photometric correction for Moon Mineralogy Mapper (M3). Icarus222, 229–242 (2013).

    Article  Google Scholar 

  47. Logan, L. & Hunt, G. R. Emission spectra of particulate silicates under simulated lunar conditions. J. Geophys. Res.75, 6539–6548 (1970).

    Article  Google Scholar 

  48. Henderson, B. G., Lucey, P. G. & Jakosky, B. M. New laboratory measurements of mid-IR emission spectra of simulated planetary surfaces.J. Geophys. Res.101, 14969–14975 (1996).

    Article  Google Scholar 

  49. Donaldson Hanna, K. L. et al. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: application to Diviner thermal infrared observations of the Moon. Icarus283, 326–342 (2017).

  50. Salisbury, J. W., Murcray, D. G., Williams, W. J. & Blatherwick, R. D. Thermal infrared spectra of the Moon. Icarus115, 181–190 (1995).

    Article  Google Scholar 

  51. Greenhagen, B. T. et al. Global silicate mineralogy of the moon from the diviner lunar radiometer. Science329, 1507–1509 (2010).

    Article  Google Scholar 

  52. Shkuratov, Y. et al. Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci.59, 1326–1371 (2011).

    Article  Google Scholar 

  53. Nicodemus, F. E. Directional reflectance and emissivity of an opaque surface. Appl. Opt.4, 767–775 (1965).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge funding by the Lunar Reconnaissance Orbiter program and Lunar Data Analysis Program grant NNX16AN63G. Our work benefited from discussions with the LRO Diviner science team, S. Li, and R. Milliken.

Author information

Authors and Affiliations

Authors

Contributions

J.L.B. developed the thermal correction model and led the processing and analysis of the M3 and Diviner data. M.J.P. contributed to the interpretation of spectral features and the development of formation mechanism hypotheses. R.L.K. contributed to the spectral interpretation of the M3 data and discussions of petrological sources of OH/H2O. C.S.E. contributed to the development of the thermal and roughness model and assisted with the interpretation of the spectral data sets.

Corresponding author

Correspondence to Joshua L. Bandfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandfield, J.L., Poston, M.J., Klima, R.L. et al. Widespread distribution of OH/H2O on the lunar surface inferred from spectral data. Nature Geosci 11, 173–177 (2018). https://doi.org/10.1038/s41561-018-0065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0065-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing