Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modification of the Western Gondwana craton by plume–lithosphere interaction

A Publisher Correction to this article was published on 05 June 2018


The longevity of cratons is generally attributed to persistence of neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Here we show that large portions of the cratonic lithosphere in South America and Africa, however, experienced significant modification during and since the Mesozoic era, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We suggest that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered delamination of deep lithospheric roots during the Late Cretaceous and early Cenozoic periods. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow, high seismic velocities and realigned seismic anisotropy. We conclude that the original lowermost cratonic lithosphere is compositionally denser than the asthenospheric mantle and can be removed when perturbed by underlying mantle upwelling. Therefore, it is the buoyancy of the upper lithosphere that perpetuates stabilization of cratons.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topography and tectonic history of the South Atlantic margins.
Fig. 2: Lithospheric residual topography and gravity.
Fig. 3: Seismic structure of the lithosphere and underlying mantle in the study region.
Fig. 4: Comparison of observed and mantle-flow-induced seismic anisotropy.
Fig. 5: Schematic illustration of proposed cratonic lithosphere evolution since the Cretaceous.


  1. Jordan, T. H. Composition and development of the continental tectosphere. Nature274, 544–548 (1978).

    Article  Google Scholar 

  2. Durrheim, R. J. & Mooney, W. D. Evolution of the precambrian lithosphere: seismological and geochemical constraints. J. Geophys. Res.99, 15359–15374 (1994).

    Article  Google Scholar 

  3. Carlson, R. W., Pearson, D. G. & James, D. E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43, RG1001 (2005).

  4. Lee, C.-T. A., Luffi, P. & Chin, E. J. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci.39, 59–90 (2011).

    Article  Google Scholar 

  5. Yuan, H. & Romanowicz, B. Lithospheric layering in the North American craton. Nature466, 1063–1069 (2010).

    Article  Google Scholar 

  6. Yuan, K. & Beghein, C. Seismic anisotropy changes across upper mantle phase transitions. Earth. Planet. Sci. Lett.374, 132–144 (2013).

    Article  Google Scholar 

  7. Debayle, E. & Kennett, B. L. N. The Australian continental upper mantle: structure and deformation inferred from surface waves. J. Geophys. Res. Solid Earth105, 25423–25450 (2000).

  8. King, S. D. Archean cratons and mantle dynamics. Earth Planet. Sci. Lett.234, 1–14 (2005).

    Article  Google Scholar 

  9. Eaton, D. W. & Perry, H. K. C. Ephemeral isopycnicity of cratonic mantle keels. Nat. Geosci.6, 967–970 (2013).

    Article  Google Scholar 

  10. Kaban, M. K., Mooney, W. D. & Petrunin, A. G. Cratonic root beneath North America shifted by basal drag from the convecting mantle.Nat. Geosci.8, 797–800 (2015).

    Article  Google Scholar 

  11. Griffin, W. L., Andi, Z., O’Reilly, S. Y. & Ryan, C. G. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton.Mantle Dyn. Plate Interact. East Asia27, 107–126 (1998).

    Article  Google Scholar 

  12. Levander, A et al. Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling. Nature472, 461–465 (2011).

  13. Alkmim, F. F. et al. Kinematic evolution of the Araçuaí–West Congo orogen in Brazil and Africa: nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precam. Res.149, 43–64 (2006).

  14. Kaban, M. K., Schwintzer, P., Artemieva, I. M. & Mooney, W. D. Density of the continental roots: compositional and thermal contributions.Earth Planet. Sci. Lett.209, 53–69 (2003).

    Article  Google Scholar 

  15. Mooney, W. D. & Kaban, M. K. The North American upper mantle: density, composition, and evolution. J. Geophys. Res.115, B12424 (2010).

  16. Arai, M. Chapadas: relict of mid-Cretaceous interior seas in Brazil. Rev. Bras. Geoci.30, 436–438 (2000).

  17. Catuneanu, O. et al. The Karoo basins of south-central Africa.J. Afr. Earth Sci.3, 211–253 (2005).

  18. Harman, R., Gallagher, K., Brown, R., Raza, A. & Bizzi, L. Accelerated denudation and tectonic/geomorphic reactivation of the cratons of northeastern Brazil during the Late Cretaceous. J. Geophys. Res.103, 27091–27105 (1998).

    Article  Google Scholar 

  19. Hanson, E. K. et al. Cretaceous erosion in central South Africa: Evidence from upper-crustal xenoliths in kimberlite diatremes. South Afr. J. Geol.112, 125–140 (2009).

  20. Cogné, N., Gallagher, K. & Cobbold, P. R. Post-rift reactivation of the onshore margin of southeast Brazil: evidence from apatite (U–Th)/He and fission-track data. Earth Planet. Sci. Lett.309, 118–130 (2011).

  21. Read, G. et al. Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution, Quiricó Basin, Minas Gerais State, Brazil.Lithos77, 803–818 (2004).

  22. Stanley, J. R., Flowers, R. M. & Bell, D. R. Kimberlite (U–Th)/He dating links surface erosion with lithospheric heating, thinning, and metasomatism in the southern African Plateau. Geology41, 1243–1246 (2013).

  23. Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. Geophys. Res. Abstr.15, EGU2013–2658 (2013).

  24. Reid, A. B., Ebbing, J. & Webb, S. J. Comment on ‘A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution’ by Getachew E. Tedla, M. van der Meijde, A. A. Nyblade and F. D. van der Meer. Geophys. J. Int.189, 1217–1222 (2012).

  25. Assumpção, M., Feng, M., Tassara, A. & Julià, J. Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography. Tectonophysics609, 82–96 (2013).

    Article  Google Scholar 

  26. Liu, L., K. Liu and S. Gao. Lithospheric layering beneath southern Africa constrained by S-to-P receiver functions. In AGU Fall General Assembly 2016. abstr. DI51A-2660 (American Geophysical Union, 2016).

  27. Globig, J. et al New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis.J. Geophys. Res. Solid Earth121, 5389–5424 (2016).

    Article  Google Scholar 

  28. Shephard, G. E., Müller, R. D., Liu, L. & Gurnis, M. Miocene drainage reversal of the Amazon River driven by plate-mantle interaction.Nat. Geosci.3, 870–875 (2010).

    Article  Google Scholar 

  29. Flament, N., Gurnis, M. & Müller, R. D. A review of observations and models of dynamic topography. Lithosphere5, 189–210 (2012).

    Article  Google Scholar 

  30. Moucha, R. & Forte, A. M. Changes in African topography driven by mantle convection. Nat. Geosci.4, 707–712 (2011).

    Article  Google Scholar 

  31. French, S., Lekic, V. & Romanowicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science342, 227–230 (2013).

    Article  Google Scholar 

  32. Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int.184, 1223–1236 (2011).

    Article  Google Scholar 

  33. Pasyanos, M. E., Masters, T. G., Laske, G. & Ma, Z. LITHO1.0: an updated crust and lithospheric model of the Earth. J. Geophys. Res.119, 2153–2173 (2014).

  34. Priestley, K. & McKenzie, D. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet. Sci. Lett.381, 78–91 (2013).

    Article  Google Scholar 

  35. Adams, A. & Nyblade, A. Shear wave velocity structure of the southern African upper mantle with implications for the uplift of southern Africa. Geophys. J. Int.186, 808–824 (2011).

    Article  Google Scholar 

  36. Feng, M., Assumpção, M. & Van der Lee, S. Group velocity tomography and lithospheric S-velocity structure of the South American continent. Phys. Earth Planet. Inter.147, 315–331 (2007).

    Article  Google Scholar 

  37. Dalton, C. A., Bao, X. & Ma, Z. The thermal structure of cratonic lithosphere from global Rayleigh wave attenuation. Earth Planet. Sci. Lett.457, 250–262 (2017).

    Article  Google Scholar 

  38. Artemieva, I. Global 1 degrees x 1 degrees thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution.Tectonophysics416, 245–277 (2006).

    Article  Google Scholar 

  39. Guillocheau, F. et al. Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: a new method applied to the Namibia–South Africa margin. Basin Res.24, 3–30 (2012).

  40. Griffin, W. L. et al. The origin and evolution of Archean lithospheric mantle. Precambrian Res.127, 19–41 (2003).

  41. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett.205, 295–308 (2003).

    Article  Google Scholar 

  42. Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangaea breakup. Annu. Rev. Earth Planet. Sci.44, 107–138 (2016).

  43. King, S. & Ritsema, J. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science290, 1137–1140 (2000).

  44. Hu, J., Faccenda, M. & Liu, L. Subduction-controlled mantle flow and seismic anisotropy in South America. Earth Planet. Sci. Lett.470, 13–24 (2017).

    Article  Google Scholar 

  45. Schaeffer, A. J., Lebedev, S. & Becker, T. W. Azimuthal seismic anisotropy in the Earth’s upper mantle and the thickness of tectonic plates.Geophys. J. Int.207, 901–933 (2016).

    Article  Google Scholar 

  46. Debayle, E., F. Dubuffet, and S. Durand, An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy.Geophys. Res. Lett. 43, 674–682, (2016).

  47. Yaxley, G. M. et al. The discovery of kimberlites in Antarctica extends the vast Gondwanan Cretaceous province. Nat. Commun.4, 2921 (2013).

  48. Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol.39, 29–60 (1998).

    Article  Google Scholar 

  49. Rader, E. et al. Characterization and petrological constraints of the midlithospheric discontinuity. Geochem. Geophys. Geosys.16, 3484–3504 (2015).

  50. Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals-II. Phase equilibria. Geophys. J. Int.184, 1180–1213 (2011).

    Article  Google Scholar 

  51. Wittlinger, G. & Farra, V. Converted waves reveal a thick and layered tectosphere beneath the Kalahari super-craton. Earth Planet. Sci. Lett.254, 404–415 (2007).

    Article  Google Scholar 

  52. Sodoudi, F. et al. Seismic evidence for stratification in composition and anisotropic fabric within the thick lithosphere of Kalahari Craton. Geochem. Geophys. Geosys.14, 5393–5412 (2013).

  53. Selway, K., Ford, H. & Kelemen, P. The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett.414, 45–57 (2015).

    Article  Google Scholar 

  54. Fischer, Karen M., Ford, Heather A., Abt, David L., Rychert, Catherine A. The Lithosphere–Asthenosphere boundary. Ann. Rev. Earth Planet. Sci.38 551–575, (2010).

  55. Chen, L. et al. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton. Geology42, 223–226 (2014).

  56. Liao, J., Gerya, T. & Wang, Q. Layered structure of the lithospheric mantle changes dynamics of craton extension. Geophys. Res. Lett.40, 5861–5866 (2013).

    Article  Google Scholar 

  57. Jelsma, H., Barnett, W., Richards, S. & Lister, G. Tectonic setting of kimberlites. Lithos112S, 155–165 (2009).

    Article  Google Scholar 

  58. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. inEarth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale (eds Karato, S.-I., Forte, A., Liebermann, R., Masters, G. & Stixrude, L.) 63–87 (American Geophysical Union Monograph, 2000).

  59. Ni, S., Tan, E., Gurnis, M. & Helmberger, D. Sharp sides to the African superplume. Science296, 1850–1852 (2002).

    Article  Google Scholar 

  60. McNamara, A. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature437, 1136–1139 (2005).

    Article  Google Scholar 

  61. Steinberger, B. Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface. Phys. Earth Planet. Inter.164, 2–20 (2007).

    Article  Google Scholar 

  62. Conrad, C. P. & Husson, L. Influence of dynamic topography on sea level and its rate of change. Lithosphere1, 110–120 (2009).

    Article  Google Scholar 

  63. Simmons, N. A., Forte, A. M. & Grand, S. P. Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: implications for the relative importance of thermal versus compositional heterogeneity. Geophys. J. Int.177, 1284–1304 (2009).

  64. Bonvalot, S. et al. World Gravity Map: 1:50,000,000 Map (International Gravimetric Bureau, 2012).

  65. Kopylova, M. G. & Caro, G. Mantle xenoliths from the southeastern slave craton: evidence for chemical zonation in a thick, cold lithosphere. J. Petrol.45, 1045–1067 (2004).

  66. Griffin, W. L. & O’Reilly, S. Y. in Developments in Precambrian Geology (eds Martin, R. H. S., van Kranendonk, J. & Vickie, C. B.) Ch. 8.2, 1013–1035 (Elsevier, 2007);

  67. Wang, H., J. van Hunen & D. G. Pearson. The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening.Geochem. Geophys. Geosys. 16, 1156–1171 (2015).

Download references


We thank T. Jordan, W. Mooney, S. Gao and L. Chen for helpful comments on the manuscript. L.L. acknowledges NSF grants EAR-1345135, 1554554, 1565640 and supercomputing allocation on Blue Waters through ACI-1516586. M.F. acknowledges the grant Progetto di Ateneo FACCPTRAT12 from Università di Padova.

Author information

Authors and Affiliations



J.H. and L.L. conceived the project and performed the analysis. M.F. contributed to anisotropy and mineral physics. Q.Z., K.F., S.M. and C.L. contributed to gravity, seismology, geology and petrology, respectively. All authors participated in manuscript preparation.

Corresponding author

Correspondence to Lijun Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Liu, L., Faccenda, M. et al. Modification of the Western Gondwana craton by plume–lithosphere interaction. Nature Geosci 11, 203–210 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing