Abstract
The longevity of cratons is generally attributed to persistence of neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Here we show that large portions of the cratonic lithosphere in South America and Africa, however, experienced significant modification during and since the Mesozoic era, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We suggest that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered delamination of deep lithospheric roots during the Late Cretaceous and early Cenozoic periods. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow, high seismic velocities and realigned seismic anisotropy. We conclude that the original lowermost cratonic lithosphere is compositionally denser than the asthenospheric mantle and can be removed when perturbed by underlying mantle upwelling. Therefore, it is the buoyancy of the upper lithosphere that perpetuates stabilization of cratons.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Seismically imaged lithospheric delamination and its controls on the Mesozoic Magmatic Province in South China
Nature Communications Open Access 11 May 2023
-
Ghost-arc geochemical anomaly at a spreading ridge caused by supersized flat subduction
Nature Communications Open Access 12 April 2023
-
Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton
Scientific Reports Open Access 15 June 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Jordan, T. H. Composition and development of the continental tectosphere. Nature274, 544–548 (1978).
Durrheim, R. J. & Mooney, W. D. Evolution of the precambrian lithosphere: seismological and geochemical constraints. J. Geophys. Res.99, 15359–15374 (1994).
Carlson, R. W., Pearson, D. G. & James, D. E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43, RG1001 (2005).
Lee, C.-T. A., Luffi, P. & Chin, E. J. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci.39, 59–90 (2011).
Yuan, H. & Romanowicz, B. Lithospheric layering in the North American craton. Nature466, 1063–1069 (2010).
Yuan, K. & Beghein, C. Seismic anisotropy changes across upper mantle phase transitions. Earth. Planet. Sci. Lett.374, 132–144 (2013).
Debayle, E. & Kennett, B. L. N. The Australian continental upper mantle: structure and deformation inferred from surface waves. J. Geophys. Res. Solid Earth105, 25423–25450 (2000).
King, S. D. Archean cratons and mantle dynamics. Earth Planet. Sci. Lett.234, 1–14 (2005).
Eaton, D. W. & Perry, H. K. C. Ephemeral isopycnicity of cratonic mantle keels. Nat. Geosci.6, 967–970 (2013).
Kaban, M. K., Mooney, W. D. & Petrunin, A. G. Cratonic root beneath North America shifted by basal drag from the convecting mantle.Nat. Geosci.8, 797–800 (2015).
Griffin, W. L., Andi, Z., O’Reilly, S. Y. & Ryan, C. G. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton.Mantle Dyn. Plate Interact. East Asia27, 107–126 (1998).
Levander, A et al. Continuing Colorado plateau uplift by delamination-style convective lithospheric downwelling. Nature472, 461–465 (2011).
Alkmim, F. F. et al. Kinematic evolution of the Araçuaí–West Congo orogen in Brazil and Africa: nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precam. Res.149, 43–64 (2006).
Kaban, M. K., Schwintzer, P., Artemieva, I. M. & Mooney, W. D. Density of the continental roots: compositional and thermal contributions.Earth Planet. Sci. Lett.209, 53–69 (2003).
Mooney, W. D. & Kaban, M. K. The North American upper mantle: density, composition, and evolution. J. Geophys. Res.115, B12424 (2010).
Arai, M. Chapadas: relict of mid-Cretaceous interior seas in Brazil. Rev. Bras. Geoci.30, 436–438 (2000).
Catuneanu, O. et al. The Karoo basins of south-central Africa.J. Afr. Earth Sci.3, 211–253 (2005).
Harman, R., Gallagher, K., Brown, R., Raza, A. & Bizzi, L. Accelerated denudation and tectonic/geomorphic reactivation of the cratons of northeastern Brazil during the Late Cretaceous. J. Geophys. Res.103, 27091–27105 (1998).
Hanson, E. K. et al. Cretaceous erosion in central South Africa: Evidence from upper-crustal xenoliths in kimberlite diatremes. South Afr. J. Geol.112, 125–140 (2009).
Cogné, N., Gallagher, K. & Cobbold, P. R. Post-rift reactivation of the onshore margin of southeast Brazil: evidence from apatite (U–Th)/He and fission-track data. Earth Planet. Sci. Lett.309, 118–130 (2011).
Read, G. et al. Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution, Quiricó Basin, Minas Gerais State, Brazil.Lithos77, 803–818 (2004).
Stanley, J. R., Flowers, R. M. & Bell, D. R. Kimberlite (U–Th)/He dating links surface erosion with lithospheric heating, thinning, and metasomatism in the southern African Plateau. Geology41, 1243–1246 (2013).
Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. Geophys. Res. Abstr.15, EGU2013–2658 (2013).
Reid, A. B., Ebbing, J. & Webb, S. J. Comment on ‘A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution’ by Getachew E. Tedla, M. van der Meijde, A. A. Nyblade and F. D. van der Meer. Geophys. J. Int.189, 1217–1222 (2012).
Assumpção, M., Feng, M., Tassara, A. & Julià, J. Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography. Tectonophysics609, 82–96 (2013).
Liu, L., K. Liu and S. Gao. Lithospheric layering beneath southern Africa constrained by S-to-P receiver functions. In AGU Fall General Assembly 2016. abstr. DI51A-2660 (American Geophysical Union, 2016).
Globig, J. et al New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis.J. Geophys. Res. Solid Earth121, 5389–5424 (2016).
Shephard, G. E., Müller, R. D., Liu, L. & Gurnis, M. Miocene drainage reversal of the Amazon River driven by plate-mantle interaction.Nat. Geosci.3, 870–875 (2010).
Flament, N., Gurnis, M. & Müller, R. D. A review of observations and models of dynamic topography. Lithosphere5, 189–210 (2012).
Moucha, R. & Forte, A. M. Changes in African topography driven by mantle convection. Nat. Geosci.4, 707–712 (2011).
French, S., Lekic, V. & Romanowicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science342, 227–230 (2013).
Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int.184, 1223–1236 (2011).
Pasyanos, M. E., Masters, T. G., Laske, G. & Ma, Z. LITHO1.0: an updated crust and lithospheric model of the Earth. J. Geophys. Res.119, 2153–2173 (2014).
Priestley, K. & McKenzie, D. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet. Sci. Lett.381, 78–91 (2013).
Adams, A. & Nyblade, A. Shear wave velocity structure of the southern African upper mantle with implications for the uplift of southern Africa. Geophys. J. Int.186, 808–824 (2011).
Feng, M., Assumpção, M. & Van der Lee, S. Group velocity tomography and lithospheric S-velocity structure of the South American continent. Phys. Earth Planet. Inter.147, 315–331 (2007).
Dalton, C. A., Bao, X. & Ma, Z. The thermal structure of cratonic lithosphere from global Rayleigh wave attenuation. Earth Planet. Sci. Lett.457, 250–262 (2017).
Artemieva, I. Global 1 degrees x 1 degrees thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution.Tectonophysics416, 245–277 (2006).
Guillocheau, F. et al. Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: a new method applied to the Namibia–South Africa margin. Basin Res.24, 3–30 (2012).
Griffin, W. L. et al. The origin and evolution of Archean lithospheric mantle. Precambrian Res.127, 19–41 (2003).
Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett.205, 295–308 (2003).
Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangaea breakup. Annu. Rev. Earth Planet. Sci.44, 107–138 (2016).
King, S. & Ritsema, J. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science290, 1137–1140 (2000).
Hu, J., Faccenda, M. & Liu, L. Subduction-controlled mantle flow and seismic anisotropy in South America. Earth Planet. Sci. Lett.470, 13–24 (2017).
Schaeffer, A. J., Lebedev, S. & Becker, T. W. Azimuthal seismic anisotropy in the Earth’s upper mantle and the thickness of tectonic plates.Geophys. J. Int.207, 901–933 (2016).
Debayle, E., F. Dubuffet, and S. Durand, An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy.Geophys. Res. Lett. 43, 674–682, (2016).
Yaxley, G. M. et al. The discovery of kimberlites in Antarctica extends the vast Gondwanan Cretaceous province. Nat. Commun.4, 2921 (2013).
Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol.39, 29–60 (1998).
Rader, E. et al. Characterization and petrological constraints of the midlithospheric discontinuity. Geochem. Geophys. Geosys.16, 3484–3504 (2015).
Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals-II. Phase equilibria. Geophys. J. Int.184, 1180–1213 (2011).
Wittlinger, G. & Farra, V. Converted waves reveal a thick and layered tectosphere beneath the Kalahari super-craton. Earth Planet. Sci. Lett.254, 404–415 (2007).
Sodoudi, F. et al. Seismic evidence for stratification in composition and anisotropic fabric within the thick lithosphere of Kalahari Craton. Geochem. Geophys. Geosys.14, 5393–5412 (2013).
Selway, K., Ford, H. & Kelemen, P. The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett.414, 45–57 (2015).
Fischer, Karen M., Ford, Heather A., Abt, David L., Rychert, Catherine A. The Lithosphere–Asthenosphere boundary. Ann. Rev. Earth Planet. Sci.38 551–575, (2010).
Chen, L. et al. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton. Geology42, 223–226 (2014).
Liao, J., Gerya, T. & Wang, Q. Layered structure of the lithospheric mantle changes dynamics of craton extension. Geophys. Res. Lett.40, 5861–5866 (2013).
Jelsma, H., Barnett, W., Richards, S. & Lister, G. Tectonic setting of kimberlites. Lithos112S, 155–165 (2009).
Masters, G., Laske, G., Bolton, H. & Dziewonski, A. inEarth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale (eds Karato, S.-I., Forte, A., Liebermann, R., Masters, G. & Stixrude, L.) 63–87 (American Geophysical Union Monograph, 2000).
Ni, S., Tan, E., Gurnis, M. & Helmberger, D. Sharp sides to the African superplume. Science296, 1850–1852 (2002).
McNamara, A. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature437, 1136–1139 (2005).
Steinberger, B. Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface. Phys. Earth Planet. Inter.164, 2–20 (2007).
Conrad, C. P. & Husson, L. Influence of dynamic topography on sea level and its rate of change. Lithosphere1, 110–120 (2009).
Simmons, N. A., Forte, A. M. & Grand, S. P. Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: implications for the relative importance of thermal versus compositional heterogeneity. Geophys. J. Int.177, 1284–1304 (2009).
Bonvalot, S. et al. World Gravity Map: 1:50,000,000 Map (International Gravimetric Bureau, 2012).
Kopylova, M. G. & Caro, G. Mantle xenoliths from the southeastern slave craton: evidence for chemical zonation in a thick, cold lithosphere. J. Petrol.45, 1045–1067 (2004).
Griffin, W. L. & O’Reilly, S. Y. in Developments in Precambrian Geology (eds Martin, R. H. S., van Kranendonk, J. & Vickie, C. B.) Ch. 8.2, 1013–1035 (Elsevier, 2007); https://doi.org/10.1016/S0166-2635(07)15082-9
Wang, H., J. van Hunen & D. G. Pearson. The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening.Geochem. Geophys. Geosys. 16, 1156–1171 (2015).
Acknowledgements
We thank T. Jordan, W. Mooney, S. Gao and L. Chen for helpful comments on the manuscript. L.L. acknowledges NSF grants EAR-1345135, 1554554, 1565640 and supercomputing allocation on Blue Waters through ACI-1516586. M.F. acknowledges the grant Progetto di Ateneo FACCPTRAT12 from Università di Padova.
Author information
Authors and Affiliations
Contributions
J.H. and L.L. conceived the project and performed the analysis. M.F. contributed to anisotropy and mineral physics. Q.Z., K.F., S.M. and C.L. contributed to gravity, seismology, geology and petrology, respectively. All authors participated in manuscript preparation.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary figures
Rights and permissions
About this article
Cite this article
Hu, J., Liu, L., Faccenda, M. et al. Modification of the Western Gondwana craton by plume–lithosphere interaction. Nature Geosci 11, 203–210 (2018). https://doi.org/10.1038/s41561-018-0064-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-018-0064-1
This article is cited by
-
Genesis and evolution of kimberlites
Nature Reviews Earth & Environment (2023)
-
Rift-induced disruption of cratonic keels drives kimberlite volcanism
Nature (2023)
-
Seismically imaged lithospheric delamination and its controls on the Mesozoic Magmatic Province in South China
Nature Communications (2023)
-
Ghost-arc geochemical anomaly at a spreading ridge caused by supersized flat subduction
Nature Communications (2023)
-
Secular craton evolution due to cyclic deformation of underlying dense mantle lithosphere
Nature Geoscience (2023)