Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxidized iron in garnets from the mantle transition zone


The oxidation state of iron in Earth’s mantle is well known to depths of approximately 200 km, but has not been characterized in samples from the lowermost upper mantle (200–410 km depth) or the transition zone (410–660 km depth). Natural samples from the deep (>200 km) mantle are extremely rare, and are usually only found as inclusions in diamonds. Here we use synchrotron Mössbauer source spectroscopy complemented by single-crystal X-ray diffraction to measure the oxidation state of Fe in inclusions of ultra-high pressure majoritic garnet in diamond. The garnets show a pronounced increase in oxidation state with depth, with Fe3+/(Fe3++ Fe2+) increasing from 0.08 at approximately 240 km depth to 0.30 at approximately 500 km depth. The latter majorites, which come from pyroxenitic bulk compositions, are twice as rich in Fe3+ as the most oxidized garnets from the shallow mantle. Corresponding oxygen fugacities are above the upper stability limit of Fe metal. This implies that the increase in oxidation state is unconnected to disproportionation of Fe2+ to Fe3+ plus Fe0. Instead, the Fe3+ increase with depth is consistent with the hypothesis that carbonated fluids or melts are the oxidizing agents responsible for the high Fe3+ contents of the inclusions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Chemical composition of majoritic garnet inclusions in diamonds worldwide.
Fig. 2: Ferric iron contents of majoritic garnets from Jagersfontein diamonds compared with lithospheric garnets from peridotite xenoliths.
Fig. 3: Calculated oxygen fugacities (see Methods) of the majoritic inclusions and of garnets crystallized in coexistence with Fe metal20.


  1. 1.

    McDonough, W. F. & Sun, S. S. The Composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  2. 2.

    Canil, D. et al. Ferric iron in peridotites and mantle oxidation states. Earth Planet. Sci. Lett. 123, 205–220 (1994).

    Article  Google Scholar 

  3. 3.

    Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990).

    Article  Google Scholar 

  4. 4.

    Frost, D. J. & McCammon, C. A. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    Article  Google Scholar 

  5. 5.

    Woodland, A. B. & Koch, M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet. Sci. Lett. 214, 295–310 (2003).

    Article  Google Scholar 

  6. 6.

    Gudmundsson, G. & Wood, B. J. Experimental tests of garnet peridotite oxygen barometry. Contrib. Mineral. Petrol. 119, 56–67 (1995).

    Article  Google Scholar 

  7. 7.

    Ballhaus, C. Is the upper mantle metal-saturated. Earth Planet. Sci. Lett. 132, 75–86 (1995).

    Article  Google Scholar 

  8. 8.

    Jacob, D. E., Kronz, A. & Viljoen, K. S. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib. Mineral. Petrol. 146, 566–576 (2004).

    Article  Google Scholar 

  9. 9.

    Sobolev, N. V., Efimova, E. S. & Pospelova, L. N. Native iron in diamonds of Yakutia and its paragenesis. Geol. Geofiz. 22, 25–28 (1981).

    Google Scholar 

  10. 10.

    Smith, E. M. et al. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science 354, 1403–1405 (2016).

    Article  Google Scholar 

  11. 11.

    Golubkova, A., Schmidt, M. W. & Connolly, J. A. D. Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: A thermodynamic model for moissanite (SiC) formation. Contrib. Mineral. Petrol. 171, 1–17 (2016).

    Article  Google Scholar 

  12. 12.

    Beyer, C. & Frost, D. J. The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle. Earth Planet. Sci. Lett. 461, 30–39 (2017).

    Article  Google Scholar 

  13. 13.

    Irifune, T. & Ringwood, A. E. in High-pressure Research in Mineral Physics Vol. 1 (eds Manghnani, M. H. & Syono, Y.) 235–246 (Terra Scientific, Tokyo, 1987).

  14. 14.

    Wood, B. J., Kiseeva, E. S. & Matzen, A. K. Garnet in the Earth's Mantle. Elements 9, 421–426 (2013).

    Article  Google Scholar 

  15. 15.

    Irifune, T. & Ringwood, A. E. Phase transformations in a harzburgite composition to 26 GPa—implications for dynamical behavior of the subducting slab. Earth Planet. Sci. Lett. 86, 365–376 (1987).

    Article  Google Scholar 

  16. 16.

    Kiseeva, E. S. et al. Metapyroxenite in the mantle transition zone revealed from majorite inclusions in diamonds. Geology 41, 883–886 (2013).

    Article  Google Scholar 

  17. 17.

    Pearson, D. G., Davies, G. R. & Nixon, P. H. Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. J. Petrol. 34, 125–172 (1993).

    Article  Google Scholar 

  18. 18.

    Kiseeva, E. S., Wood, B. J., Ghosh, S. & Stachel, T. The pyroxenite–diamond connection. Geochem. Perspect. Lett. 2, 1–9 (2016).

    Article  Google Scholar 

  19. 19.

    Thomson, A. R., Walter, M. J., Kohn, S. C. & Brooker, R. A. Slab melting as a barrier to deep carbon subduction. Nature 529, 76–79 (2016).

    Article  Google Scholar 

  20. 20.

    Rohrbach, A. et al. Metal saturation in the upper mantle. Nature 449, 456–458 (2007).

    Article  Google Scholar 

  21. 21.

    Holland, T. J., Hudson, N. F., Powell, R. & Harte, B. New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle. J. Petrol. 54, 1901–1920 (2013).

    Article  Google Scholar 

  22. 22.

    Holland, T. J. B. & Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29, 333–383 (2011).

    Article  Google Scholar 

  23. 23.

    Mckenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  Google Scholar 

  24. 24.

    Xu, C. et al. Recovery of an oxidized majorite inclusion from Earth’s deep asthenosphere. Sci. Adv. 3, e1601589 (2017).

    Article  Google Scholar 

  25. 25.

    Ickert, R. B., Stachel, T., Stern, R. A. & Harris, J. W. Extreme 18O-enrichment in majorite constrains a crustal origin of transition zone diamonds. Geochem. Perspect. Lett. 1, 65–74 (2015).

    Google Scholar 

  26. 26.

    Tappert, R. et al. Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle. Contrib. Mineral. Petrol. 150, 505–522 (2005).

    Article  Google Scholar 

  27. 27.

    Canil, D. & ONeill, H. S. C. Distribution of ferric iron in some upper-mantle assemblages. J. Petrol. 37, 609–635 (1996).

    Article  Google Scholar 

  28. 28.

    Goncharov, A. G., Ionov, D. A., Doucet, L. S. & Pokhilenko, L. N. Thermal state, oxygen fugacity and C–O–H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 357, 99–110 (2012).

    Article  Google Scholar 

  29. 29.

    Lazarov, M., Woodland, A. B. & Brey, G. P. Thermal state and redox conditions of the Kaapvaal mantle: A study of xenoliths from the Finsch mine, South Africa. Lithos 112, 913–923 (2009).

    Article  Google Scholar 

  30. 30.

    Luth, R. W., Virgo, D., Boyd, F. R. & Wood, B. J. Ferric iron in mantle-derived garnets—implications for thermobarometry and for the oxidation state of the mantle. Contrib. Mineral. Petrol. 104, 56–72 (1990).

    Article  Google Scholar 

  31. 31.

    McCammon, C. & Kopylova, M. G. A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib. Mineral. Petrol. 148, 55–68 (2004).

    Article  Google Scholar 

  32. 32.

    Kopylova, M. G., Beausoleil, Y., Goncharov, A., Burgess, J. & Strand, P. Spatial distribution of eclogite in the Slave cratonic mantle: the role of subduction. Tectonophysics 672, 87–103 (2016).

    Article  Google Scholar 

  33. 33.

    Potapkin, V. et al. The 57Fe synchrotron Mössbauer source at the ESRF. J. Synchrotron Radiat. 19, 559–569 (2012).

    Article  Google Scholar 

  34. 34.

    Nestola, F. et al. Synchrotron Mössbauer source technique for in situ measurement of iron-bearing inclusions in natural diamonds. Lithos 265, 328–333 (2016).

    Article  Google Scholar 

  35. 35.

    Prescher, C., McCammon, C. & Dubrovinsky, L. MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J. Appl. Crystallogr. 45, 329–331 (2012).

    Google Scholar 

  36. 36.

    Geiger, C. A. et al. A combined temperature dependent 57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: evidence for the Goldanskii–Karyagin effect. Phys. Chem. Miner. 19, 121–126 (1992).

    Article  Google Scholar 

  37. 37.

    Lyubutin, I. & Dodokin, A. Temperature dependence of Mössbauer effect for Fe2+ in dodecahedral coordination in garnet. Sov. Phys. Crystallogr. 15, 1091–1092 (1971).

    Google Scholar 

  38. 38.

    Lyubutin, I., Dodokin, A. & Belyaev, L. Temperature dependence of Mössbauer effect for octahedral iron atoms in garnets. Sov. Phys. Solid State 12, 1100–1101 (1970).

    Google Scholar 

  39. 39.

    McCammon, C. A. & Ross, N. L. Crystal chemistry of ferric iron in (Mg, Fe)(Si,Al)O3 majorite with implications for the transition zone. Phys. Chem. Miner. 30, 206–216 (2003).

    Article  Google Scholar 

  40. 40.

    Liermann, H. P. et al. The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA III. J. Synchrotron Radiat. 22, 908–924 (2015).

    Article  Google Scholar 

  41. 41.

    CrysAlisPro v.171.38.43 (Agilent Technologies, 2013).

  42. 42.

    Petříček, V., Dušek, M. & Palatinus, L. Crystallographic computing system JANA2006: General features. Z. Krist. Cryst. Mater. 229, 345–352 (2014).

    Google Scholar 

  43. 43.

    Stagno, V., Ojwang, D. O., McCammon, C. A. & Frost, D. J. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 493, 84–88 (2013).

    Article  Google Scholar 

  44. 44.

    Holmes, R. D., O’Neill, H. S. C. & Arculus, R. J. Standard Gibbs free energy of formation for Cu2O, NiO, CoO, and Fe x O: High-resolution electrochemical measurements using zirconia solid electrolytes from 900-1400 K. Geochim. Cosmochim. Acta 50, 2439–2452 (1986).

    Article  Google Scholar 

  45. 45.

    Ahrens, T. J. (Ed.) Mineral Physics and Crystallography: A Handbook of Physical Constants (American Geophysical Union, Washington DC, 1995).

Download references


We thank T. Holland for checking some of our calculations and D. Frost for providing his spreadsheet for oxygen fugacity calculations using garnet equilibria, A. Schönleber for discussion of XRD results and D. Simonova for assistance during Mössbauer experiments. We acknowledge support from European Research Council grant 267764 to B.J.W. and NERC grant NE/L010828/1 to E.S.K. Financial support was provided to L.D. and C.M. through DFG grants Mc 3/18-1 and Mc 3/20-1, and through BMBF grants. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities.

Author information




Work was initiated and planned by E.S.K. and L.D. T.S. and J.W.H. provided the samples and their detailed description. M.B., D.M.V., E.B. and L.D. performed the X-ray diffraction measurements. D.M.V., M.B., E.B. and L.D. processed and analysed the diffraction data. D.M.V., V.C., A.C. and C.M. collected, processed and analysed the Mössbauer spectra. E.S.K. and B.J.W. interpreted the data, performed the thermodynamic calculations and prepared the manuscript. All co-authors read, commented and approved of the manuscript.

Corresponding author

Correspondence to Ekaterina S. Kiseeva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary data tables and figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiseeva, E.S., Vasiukov, D.M., Wood, B.J. et al. Oxidized iron in garnets from the mantle transition zone. Nature Geosci 11, 144–147 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing