Deep and persistent melt layer in the Archaean mantle

Abstract

The transition from the Archaean to the Proterozoic eon ended a period of great instability at the Earth’s surface. The origin of this transition could be a change in the dynamic regime of the Earth’s interior. Here we use laboratory experiments to investigate the solidus of samples representative of the Archaean upper mantle. Our two complementary in situ measurements of the melting curve reveal a solidus that is 200–250 K lower than previously reported at depths higher than about 100 km. Such a lower solidus temperature makes partial melting today easier than previously thought, particularly in the presence of volatiles (H2O and CO2). A lower solidus could also account for the early high production of melts such as komatiites. For an Archaean mantle that was 200–300 K hotter than today, significant melting is expected at depths from 100–150 km to more than 400 km. Thus, a persistent layer of melt may have existed in the Archaean upper mantle. This shell of molten material may have progressively disappeared because of secular cooling of the mantle. Crystallization would have increased the upper mantle viscosity and could have enhanced mechanical coupling between the lithosphere and the asthenosphere. Such a change might explain the transition from surface dynamics dominated by a stagnant lid on the early Earth to modern-like plate tectonics with deep slab subduction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: EC results.
Fig. 2: Images of recovered samples.
Fig. 3: The new solidus temperature profile.
Fig. 4: Partial melting in the early mantle.

References

  1. 1.

    Solomatov, V. S. in Treatise on Geophysics Vol. 9 (ed. G. Schubert) 81–104 (Elsevier, Amsterdam, 2015).

  2. 2.

    Romanowicz, B. A global tomographic model of the shear attenuation in the upper mantle. J. Geophys. Res. Solid Earth 100, 12375–12394 (1995).

    Article  Google Scholar 

  3. 3.

    Tauzin, B., Debayle, E. & Wittlinger, G. Seismic evidence for a global low-velocity layer within the Earth’s upper mantle. Nat. Geosci. 3, 718–721 (2010).

    Article  Google Scholar 

  4. 4.

    Lay, T., Garnero, E. J. & Williams, Q. Partial melting in a thermo-chemical boundary layer at the base of the mantle. Phys. Earth Planet. Inter. 146, 441–467 (2004).

    Article  Google Scholar 

  5. 5.

    Ferot, A. & Bolfan-Casanova, N. Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the Earth’s upper mantle and nature of seismic discontinuities. Earth Planet. Sci. Lett. 349, 218–230 (2012).

    Article  Google Scholar 

  6. 6.

    Aubaud, C., Hauri, E. H. & Hirschmann, M. M. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys. Res. Lett. 31, L20611 (2004).

  7. 7.

    Herzberg, C., Raterron, P. & Zhang, J. New experimental observations on the anhydrous solidus for peridotite KLB-1. Geochem. Geophys. Geosyst. 1, 1051 (2000).

  8. 8.

    Iwamori, H., McKenzie, D. & Takahashi, E. Melt generation by isentropic mantle upwelling. Earth Planet. Sci. Lett. 134, 253–266 (1995).

    Article  Google Scholar 

  9. 9.

    Trønnes, R. G. & Frost, D. J. Peridotite melting and mineral–melt partitioning of major and minor elements at 22–24.5 GPa. Earth Planet. Sci. Lett. 197, 117–131 (2002).

    Article  Google Scholar 

  10. 10.

    Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).

    Article  Google Scholar 

  11. 11.

    Agee, C. B., Li, J., Shannon, M. C. & Circone, S. Pressure–temperature phase-diagram for the Allende meteorite. J. Geophys. Res. Solid Earth 100, 17725–17740 (1995).

    Article  Google Scholar 

  12. 12.

    Litasov, K. & Ohtani, E. Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa. Phys. Earth Planet. Inter. 134, 105–127 (2002).

    Article  Google Scholar 

  13. 13.

    Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T. & Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 183, 212–218 (2010).

    Article  Google Scholar 

  14. 14.

    Laporte, D., Toplis, M. J., Seyler, M. & Devidal, J. L. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib. Mineral. Petrol. 146, 463–484 (2004).

    Article  Google Scholar 

  15. 15.

    Sifre, D. et al. Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509, 81–85 (2014).

    Article  Google Scholar 

  16. 16.

    Sato, H. & Ida, Y. Low frequency electrical impedance of partially molten gabbro: the effect of melt geometry on electrical properties. Tectonophysics 107, 105–134 (1984).

    Article  Google Scholar 

  17. 17.

    Partzsch, G. M., Schilling, F. R. & Arndt, J. The influence of partial melting on the electrical behavior of crustal rocks: laboratory examinations, model calculations and geological interpretations. Tectonophysics 317, 189–203 (2000).

    Article  Google Scholar 

  18. 18.

    Maumus, J., Bagdassarov, N. & Schmeling, H. Electrical conductivity and partial melting of mafic rocks under pressure. Geochim. Cosmochim. Acta 69, 4703–4718 (2005).

    Article  Google Scholar 

  19. 19.

    Andrault, D. et al. Melting of subducted basalt at the core–mantle boundary. Science 344, 892–895 (2014).

    Article  Google Scholar 

  20. 20.

    Davis, F. A., Hirschmann, M. M. & Humayun, M. The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB. Earth Planet. Sci. Lett. 308, 380–390 (2011).

    Article  Google Scholar 

  21. 21.

    Yoshino, T., Laumonier, M., McIsaac, E. & Katsura, T. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: implications for melt distribution and melt fraction in the upper mantle. Earth Planet. Sci. Lett. 295, 593–602 (2010).

    Article  Google Scholar 

  22. 22.

    Chantel, J. et al. Experimental evidence supports mantle partial melting in the asthenosphere. Sci. Adv. 2, e1600246 (2016).

  23. 23.

    Hirschmann, M. M. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst. 1, C000070 (2000).

  24. 24.

    Simon, F. & Glatzel, G. Fusion–pressure curve. Z. Anorg. Allg. Chem. 178, 309–316 (1929).

    Article  Google Scholar 

  25. 25.

    Zhang, J. & Herzberg, C. Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J. Geophys. Res. 99, 17729–17742 (1994).

    Article  Google Scholar 

  26. 26.

    Hirose, K. & Kushiro, I. Partial melting of dry peridotite at high-pressures—determination of compositions of melts segregated from peridotite using aggregates of diamonds. Earth Planet. Sci. Lett. 114, 477–489 (1993).

    Article  Google Scholar 

  27. 27.

    Béjina, F., Jaoul, O. & Liebermann, R. C. Diffusion in minerals at high pressure: a review. Phys. Earth Planet. Inter. 139, 3–20 (2003).

    Article  Google Scholar 

  28. 28.

    Hirschmann, M. M., Asimow, P. D., Ghiorso, M. S. & Stolper, E. M. Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production. J. Petrol. 40, 831–851 (1999).

    Article  Google Scholar 

  29. 29.

    Dalton, C. A., Langmuir, C. H. & Gale, A. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science 344, 80–83 (2014).

    Article  Google Scholar 

  30. 30.

    Litasov, K. D., Shatskiy, A. & Ohtani, E. Melting and subsolidus phase relations in peridotite and eclogite systems with reduced C–O–H fluid at 3–16 GPa. Earth Planet. Sci. Lett. 391, 87–99 (2014).

    Article  Google Scholar 

  31. 31.

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  32. 32.

    Kamber, B. S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res. 258, 48–82 (2015).

    Article  Google Scholar 

  33. 33.

    Arndt, J., Barnes, S. J. & Lesher, C. M. Komatiite (Cambridge Univ. Press, Cambridge, 2008).

  34. 34.

    Korenaga, J. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41, 117–151 (2013).

    Article  Google Scholar 

  35. 35.

    van Hunen, J. & Moyen, J.-F. in Annual Review of Earth and Planetary Sciences Vol. 40 (ed. R. Jeanloz) 195–219 (Annual Reviews, Palo Alto, CA, 2012).

  36. 36.

    Moore, W. B. & Webb, A. A. G. Heat-pipe Earth. Nature 501, 501–505 (2013).

    Article  Google Scholar 

  37. 37.

    Michaut, C. & Jaupart, C. Secular cooling and thermal structure of continental lithosphere. Earth Planet. Sci. Lett. 257, 83–96 (2007).

    Article  Google Scholar 

  38. 38.

    Monteux, J., Andrault, D. & Samuel, H. On the cooling of a deep terrestrial magma ocean. Earth Planet. Sci. Lett. 448, 140–149 (2016).

    Article  Google Scholar 

  39. 39.

    Matsukage, K. N., Jing, Z. C. & Karato, S. Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle. Nature 438, 488–491 (2005).

    Article  Google Scholar 

  40. 40.

    Sakamaki, T., Suzuki, A. & Ohtani, E. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature 439, 192–194 (2006).

    Article  Google Scholar 

  41. 41.

    Sizova, E., Gerya, T., Brown, M. & Perchuk, L. L. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229 (2010).

    Article  Google Scholar 

  42. 42.

    Foley, B. J., Bercovici, D. & Elkins-Tanton, L. T. Initiation of plate tectonics from post-magma ocean thermochemical convection. J. Geophys. Res. Solid Earth 119, 8538–8561 (2014).

    Article  Google Scholar 

  43. 43.

    Doglioni, C., Ismail-Zadeh, A., Panza, G. & Riguzzi, F. Lithosphere–asthenosphere viscosity contrast and decoupling. Phys. Earth Planet. Inter. 189, 1–8 (2011).

    Article  Google Scholar 

  44. 44.

    Jin, Z. M., Green, H. W. & Zhou, Y. Melt topology in partially molten mantle peridotite during ductile deformation. Nature 372, 164–167 (1994).

    Article  Google Scholar 

  45. 45.

    Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C. & Frost, D. J. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005).

    Article  Google Scholar 

  46. 46.

    Hennet, L. et al. Aerodynamic levitation and laser heating: applications at synchrotron and neutron sources. Eur. Phys. J. Spec. Top. 196, 151–165 (2011).

    Article  Google Scholar 

  47. 47.

    Tenner, T. J. & Hirschmann, M. M. & Humayun, M. The effect of H2O on partial melting of garnet peridotite at 3.5  GPa.Geochem. Geophys. Geosyst. 13, Q03016 (2012).

    Article  Google Scholar 

  48. 48.

    Boujibar, A. et al. Metal–silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. Earth Planet. Sci. Lett. 391, 42–54 (2014).

    Article  Google Scholar 

  49. 49.

    Hernlund, J., Leinenweber, K., Locke, D. & Tyburczy, J. A. A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am. Miner. 91, 295–305 (2006).

    Article  Google Scholar 

  50. 50.

    Yoshino, T. Laboratory electrical conductivity measurement of mantle minerals. Surv. Geophys. 31, 163–206 (2010).

    Article  Google Scholar 

  51. 51.

    Manthilake, M. et al. Electrical conductivity of wadsleyite as a function of temperature and water content. Phys. Earth Planet. Inter 174, 10–18 (2009).

    Article  Google Scholar 

  52. 52.

    Wang, Y. B. et al. A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation. J. Appl. Crystallogr. 37, 947–956 (2004).

    Article  Google Scholar 

  53. 53.

    Yamazaki, D., Kato, T., Ohtani, E. & Toriumi, M. Grain growth rates of MgSiO3 perovskite and periclase under lower mantle conditions. Science 274, 2052–2054 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Bouhifd, N. Cayzer, M. Guitreau, T. Kawamoto, T. Komabayashi, D. Laporte, M. Laumonier, H. Martin, S. Parman, B. Reynard and F. Schiavi for help and fruitful discussions. This work was supported by the French National Research Agency (ANR) contract ‘OxyDeep’. This research was financed by the French Government Laboratory of Excellence initiative no. ANR-10-LABX-0006, the Région Auvergne and the European Regional Development Fund. This is Laboratory of Excellence ClerVolc contribution number 279.

Author information

Affiliations

Authors

Contributions

L.H. and G.P. synthesized the glass starting material. G.P. and G.M. performed the EC measurements. G.P., D.A., G.M., N.B.C., D.N., N.G. and A.K. performed the X-ray diffraction measurements, which were subsequently treated by D.A. G.P. and N.B.C. determined the water content in samples using infrared spectroscopy. D.A. wrote the manuscript with help from G.P., G.M. and J.M. All of the authors discussed and commented on various versions of the manuscript.

Corresponding author

Correspondence to Denis Andrault.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andrault, D., Pesce, G., Manthilake, G. et al. Deep and persistent melt layer in the Archaean mantle. Nature Geosci 11, 139–143 (2018). https://doi.org/10.1038/s41561-017-0053-9

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing