Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting

Abstract

Annual minima in Arctic sea-ice extent and volume have been decreasing rapidly since the late 1970s, with substantial interannual variability. Summers with a particularly strong reduction of Arctic sea-ice extent are characterized by anticyclonic circulation anomalies from the surface to the upper troposphere. Here, we investigate the origin of these seasonal circulation anomalies by identifying individual Arctic anticyclones (with a lifetime of typically ten days) and analysing the air mass transport into these systems. We reveal that  these episodic upper-level induced Arctic anticyclones are relevant for generating seasonal circulation anomalies. Sea-ice reduction is systematically enhanced during the transient episodes with Arctic anticyclones and the seasonal reduction of sea-ice volume correlates with the area-averaged frequency of Arctic anticyclones poleward of 70° N (correlation coefficient of 0.57). A trajectory analysis shows that these anticyclones result from extratropical cyclones injecting extratropical air masses with low potential vorticity into the Arctic upper troposphere. Our results emphasize the fundamental role of extratropical cyclones and associated diabatic processes in establishing Arctic anticyclones and, in turn, seasonal circulation anomalies, which are of key importance for understanding the variability of summertime Arctic sea-ice melting.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Vertically coherent, seasonal geopotential height anomalies are the result of Arctic anticyclones.
Fig. 2: Time series of sea-ice volume change anomalies relative to climatology and area-averaged seasonal mean frequency of Arctic anticyclones for the summers of 1979 to 2016.
Fig. 3: Statistical analysis of sea-ice reduction and meteorological parameters related to Arctic anticyclones.
Fig. 4: Intrusions of extratropical air into the Arctic lead to the formation of Arctic anticyclones.

References

  1. 1.

    Simmonds, I. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol. 56, 18–28 (2015).

    Article  Google Scholar 

  2. 2.

    Kay, J. E., Holland, M. M. & Jahn, A. Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett. 38, L15708 (2011).

    Article  Google Scholar 

  3. 3.

    Ogi, M. & Rigor, I. G. Trends in Arctic sea ice and the role of atmospheric circulation. Atmos. Sci. Lett. 14, 97–101 (2013).

    Article  Google Scholar 

  4. 4.

    Wettstein, J. J. & Deser, C. Internal variability in projections of twenty-first century Arctic sea ice loss: role of the large-scale atmospheric circulation. J. Clim. 27, 527–550 (2014).

    Article  Google Scholar 

  5. 5.

    Serreze, M. C., Stroeve, J., Barrett, A. P. & Boisvert, L. N. Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: a cautionary tale. J. Geophys. Res. Atmos. 121, 11463–11485 (2016).

    Article  Google Scholar 

  6. 6.

    Stroeve, J., Hamilton, L. C., Bitz, C. M. & Blanchard-Wrigglesworth, E. Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008–2013. Geophys. Res. Lett. 41, 2411–2418 (2014).

    Article  Google Scholar 

  7. 7.

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    Article  Google Scholar 

  8. 8.

    Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    Article  Google Scholar 

  9. 9.

    Barnes, E. A., & Screen, J. A. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?. WIREs Clim. Change 6, 277–286 (2016).

    Article  Google Scholar 

  10. 10.

    Döscher, R., Vihma, T. & Maksimovich, E. Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: a review. Atmos. Chem. Phys. 14, 13571–13600 (2014).

    Article  Google Scholar 

  11. 11.

    Kay, J. E., L’Ecuyer, T., Gettelman, A., Stephens, G. & O’Dell, C. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett. 35, L08503 (2008).

    Google Scholar 

  12. 12.

    Kay, J. E. & L’Ecuyer, T. Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. J. Geophys. Res. Atmos. 118, 7219–7236 (2013).

    Article  Google Scholar 

  13. 13.

    Graversen, R. G., Mauritsen, T., Drijfhout, S., Tjernström, M. & Mårtensson, S. Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Clim. Dynam. 36, 2103–2112 (2010).

    Article  Google Scholar 

  14. 14.

    Screen, J. A., Simmonds, I. & Keay, K. Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res. 116, D15105 (2011).

    Article  Google Scholar 

  15. 15.

    Zhang, J., Lindsay, R., Schweiger, A. & Steele, M. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett. 40, 720–726 (2013).

    Article  Google Scholar 

  16. 16.

    Ogi, M. & Wallace, J. M. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011. Geophys. Res. Lett. 39, L09704 (2012).

    Article  Google Scholar 

  17. 17.

    Gong, T., Feldstein, S. & Lee, S. The role of downward infrared radiation in the recent Arctic winter warming trend. J. Clim. 30, 4937–4949 (2017).

    Article  Google Scholar 

  18. 18.

    Woods, C. & Caballero, R. The role of moist intrusions in winter Arctic warming and sea ice decline. J. Clim. 29, 4473–4485 (2016).

    Article  Google Scholar 

  19. 19.

    Lee, H. J. et al. Impact of poleward moisture transport from the North Pacific on the acceleration of sea ice loss in the Arctic since 2002. J. Clim. 30, 6757–6769 (2017).

    Article  Google Scholar 

  20. 20.

    Jakobson, E. & Vihma, T. Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis. Int. J. Climatol. 30, 2175–2194 (2010).

    Article  Google Scholar 

  21. 21.

    Doyle, S. H. et al. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nat. Geosci. 8, 647–653 (2015).

    Article  Google Scholar 

  22. 22.

    Belchansky, G. I., Douglas, D. C. & Platanov, N. G. Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979–2001. J. Clim. 17, 67–80 (2004).

    Article  Google Scholar 

  23. 23.

    Ding, Q. et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Change 7, 289–296 (2017).

    Article  Google Scholar 

  24. 24.

    Kwok, R. Outflow of Arctic Ocean sea ice into the Greenland and Barents Seas: 1979–2007. J. Clim. 22, 2438–2457 (2009).

    Article  Google Scholar 

  25. 25.

    Tsukernik, M., Deser, C., Alexander, M. & Tomas, R. Atmospheric forcing of Fram Strait sea ice export: a closer look. Clim. Dynam. 35, 1349–1360 (2010).

    Article  Google Scholar 

  26. 26.

    Smedsrud, L. H., Halvorsen, M. H., Stroeve, J. C., Zhang, R. & Kloster, K. Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere 11, 65–79 (2017).

    Article  Google Scholar 

  27. 27.

    Davies, H. C. Weather chains during the 2013/2014 winter and their significance for seasonal prediction. Nat. Geosci. 8, 833–837 (2015).

    Article  Google Scholar 

  28. 28.

    Grunseich, G. & Wang, B. Arctic sea ice patterns driven by the Asian summer monsoon. J. Clim. 29, 9097–9112 (2016).

    Article  Google Scholar 

  29. 29.

    Ogi, M., Rigor, I. G., McPhee, M. G. & Wallace, J. M. Summer retreat of Arctic sea ice: role of summer winds. Geophys. Res. Lett. 35, L24701 (2008).

    Article  Google Scholar 

  30. 30.

    Watanabe, E., Wang, J., Sumi, A. & Hasumi, H. Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century. Geophys. Res. Lett. 33, L23703 (2006).

    Article  Google Scholar 

  31. 31.

    Wang, J. et al. Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett. 36, L05706 (2009).

    Google Scholar 

  32. 32.

    Schweiger, A., Lindsay, R., Zhang, J., Steele, J. & Stern, H. Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res. 116, C00D06 (2011).

    Article  Google Scholar 

  33. 33.

    Hofer, S., Tedstone, A. J., Fettweis, X. & Bamber, J. L. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv. 3, e1700584 (2017).

    Article  Google Scholar 

  34. 34.

    Browning, K. A. in Extratropical Cyclones: The Erik Palmén Memorial Volume (eds Newton, C. W. & Holopainen E. O.) 129–153 (American Meteorological Society, Boston, 1990).

  35. 35.

    Madonna, E., Wernli, H., Joos, H. & Martius, O. Warm conveyor belts in the ERA-Interim data set (1979-2010). Part I: Climatology and potential vorticity evolution. J. Clim. 27, 3–26 (2014).

    Article  Google Scholar 

  36. 36.

    Grams, C. M. et al. The key role of diabatic processes in modifying the upper-tropospheric wave guide: a North Atlantic case-study. Q. J. R. Meteorol. Soc. 137, 2174–2193 (2011).

    Article  Google Scholar 

  37. 37.

    Pfahl, S., Schwierz, C., Croci-Maspoli, M., Grams, C. M. & Wernli, H. Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci. 8, 610–614 (2015).

    Article  Google Scholar 

  38. 38.

    Joos, H. & Wernli, H. Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: a case study with the limited area model COSMO. Q. J. R. Meteorol. Soc. 138, 407–418 (2012).

    Article  Google Scholar 

  39. 39.

    Wernli, H. & Schwierz, C. Surface cyclones in the ERA40 data set (1958–2001). Part I: novel identification method and global climatology. J. Atmos. Sci. 63, 2486–2507 (2006).

    Article  Google Scholar 

  40. 40.

    Zhang, J. & Rothrock, D. A. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Weath. Rev. 131, 845–861 (2003).

    Article  Google Scholar 

  41. 41.

    Maslanik, J. A. et al. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett. 34, L24501 (2007).

    Article  Google Scholar 

  42. 42.

    Comiso, J. C. & Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. 113, C02S07 (2008).

    Google Scholar 

  43. 43.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  44. 44.

    Schwierz, C., Croci-Maspoli, M. & Davies, H. C. Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett. 31, L06125 (2004).

    Article  Google Scholar 

  45. 45.

    Croci-Maspoli, M., Schwierz, C. & Davies, H. C. A multifaceted climatology of atmospheric blocking and its recent linear trend. J. Clim. 20, 633–649 (2007).

    Article  Google Scholar 

  46. 46.

    Wernli, H. & Davies, H. C. A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Q. J. R. Meteorol. Soc. 123, 467–489 (1997).

    Article  Google Scholar 

  47. 47.

    Sprenger, M. & Wernli, H. The LAGRANTO Lagrangian analysis tool – version 2.0. Geosci. Model Dev. 8, 2569–2586 (2015).

    Article  Google Scholar 

  48. 48.

    Martinez-Alvarado, O. et al. The dichotomous structure of the warm conveyor belt. Q. J. R. Meteorol. Soc. 140, 1809–1824 (2014).

    Article  Google Scholar 

  49. 49.

    Methven, J. Potential vorticity in warm conveyor belt outflow. Q. J. R. Meteorol. Soc. 141, 1065–1071 (2015).

    Article  Google Scholar 

  50. 50.

    Gray, S. L., Dunning, C. M., Methven, J., Masato, G. & Chagnon, J. M. Systematic model forecast error in Rossby wave structure. Geophys. Res. Lett. 41, 2979–2987 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

L.P. acknowledges funding from the Swiss National Science Foundation (SNSF), Grants P2EZP2_162267 and P300P2_174307. We are very grateful for the technical support from and discussions with H. Binder, M. Boettcher, C. Grams, S. Pfahl and M. Sprenger (all at ETH Zurich) and N. Blaser (UiB). Input from T. Schneider (Caltech) was very helpful for considering surface radiation anomalies associated with Arctic anticyclones.

Author information

Affiliations

Authors

Contributions

H.W. initiated this study and calculated the trajectories. L.P analysed the PIOMAS data and performed the statistical analyses. Both authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Heini Wernli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wernli, H., Papritz, L. Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting. Nature Geosci 11, 108–113 (2018). https://doi.org/10.1038/s41561-017-0041-0

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing