Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability

Abstract

Surges and glacier avalanches are expressions of glacier instability, and among the most dramatic phenomena in the mountain cryosphere. Until now, the catastrophic collapse of a glacier, combining the large volume of surges and mobility of ice avalanches, has been reported only for the 2002 130 × 106 m3 detachment of Kolka Glacier (Caucasus Mountains), which has been considered a globally singular event. Here, we report on the similar detachment of the entire lower parts of two adjacent glaciers in western Tibet in July and September 2016, leading to an unprecedented pair of giant low-angle ice avalanches with volumes of 68 ± 2 × 106 m3 and 83 ± 2 × 106 m3. On the basis of satellite remote sensing, numerical modelling and field investigations, we find that the twin collapses were caused by climate- and weather-driven external forcing, acting on specific polythermal and soft-bed glacier properties. These factors converged to produce surge-like enhancement of driving stresses and massively reduced basal friction connected to subglacial water and fine-grained bed lithology, to eventually exceed collapse thresholds in resisting forces of the tongues frozen to their bed. Our findings show that large catastrophic instabilities of low-angle glaciers can happen under rare circumstances without historical precedent.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Satellite and terrestrial images of the Aru glacier collapses.
Fig. 2: Geometry and thicknesses of the Aru collapses and avalanches.
Fig. 3: Satellite images over the Aru glaciers before collapse.
Fig. 4: Climatic data series and modelled mass balance of the Aru glaciers.
Fig. 5: Glacier thickness changes over the Aru region and Aru glaciers since 2000.
Fig. 6: Modelled two-dimensional thermal structure of the Aru glaciers.

References

  1. 1.

    Faillettaz, J., Funk, M. & Vincent, C. Avalanching glacier instabilities: Review on processes and early warning perspectives. Rev. Geophys. 53, 203–224 (2015).

    Article  Google Scholar 

  2. 2.

    Huggel, C. Recent extreme slope failures in glacial environments: effects of thermal perturbation. Quat. Sci. Rev. 28, 1119–1130 (2009).

    Article  Google Scholar 

  3. 3.

    Evans, S. G. et al. A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascaran, Cordillera Blanca, Peru in 1962 and 1970. Eng. Geol. 108, 96–118 (2009).

    Article  Google Scholar 

  4. 4.

    Evans, S. G. & Delaney, K. B. in Snow and Ice-related Hazards, Risks, and Disasters Hazards and Disasters Series (eds Haeberli, W. & Whitemann, C.) 563–606 (Elsevier, Amsterdam, 2015).

  5. 5.

    van der Woerd, J. et al. Giant, ~M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan, northern Tibet: characteristics, nature and dynamics. Geol. Soc. Am. Bull. 116, 394–406 (2004).

    Article  Google Scholar 

  6. 6.

    Harrison, W. D. & Post, A. S. How much do we really know about glacier surging? Ann. Glaciol. 36, 1–6 (2003).

    Article  Google Scholar 

  7. 7.

    Yasuda, T. & Furuya, M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. J. Geophys. Res. F. 120, 2393–2405 (2015).

    Article  Google Scholar 

  8. 8.

    Harrison, W. D. et al. in Snow and Ice-related Hazards, Risks, and Disasters Hazards and Disasters Series (eds Haeberli, W. & Whitemann, C.) 437–485 (Elsevier, Amsterdam, 2015).

  9. 9.

    Sevestre, H. & Benn, D. I. Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging. J. Glaciol. 61, 646–662 (2015).

    Article  Google Scholar 

  10. 10.

    Murray, T., Strozzi, T., Luckman, A., Jiskoot, H. & Christakos, P. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. J. Geophys. Res. B 108, 2237 (2003).

    Article  Google Scholar 

  11. 11.

    Jiskoot, H. in Encyclopedia of Snow, Ice and Glaciers (eds Singh, V. P. & Haritashya, U. K.) 415–428 (Springer, Dordrecht, 2011).

  12. 12.

    Fowler, A. C., Murray, T. & Ng, F. S. L. Thermally controlled glacier surging. J. Glaciol. 47, 527–538 (2001).

    Article  Google Scholar 

  13. 13.

    Sevestre, H., Benn, D. I., Hulton, N. R. J. & Baelum, K. Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging. J. Geophys. Res. F. 120, 2220–2236 (2015).

    Article  Google Scholar 

  14. 14.

    Frappe, T. P. & Clarke, G. K. C. Slow surge of Trapridge Glacier, Yukon territory, Canada. J. Geophys. Res. F. 112, F03s32 (2007).

    Google Scholar 

  15. 15.

    Kamb, B. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. B 92, 9083–9100 (1987).

    Article  Google Scholar 

  16. 16.

    Truffer, M., Harrison, W. D. & Echelmeyer, K. A. Glacier motion dominated by processes deep in underlying till. J. Glaciol. 46, 213–221 (2000).

    Article  Google Scholar 

  17. 17.

    Clarke, G. K. C., Collins, S. G. & Thompson, D. E. Flow, thermal structure, and subglacial conditions of a surge-type glacier. Can. J. Earth Sci. 21, 232–240 (1984).

    Article  Google Scholar 

  18. 18.

    Evans, S. G. et al. Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology 105, 314–321 (2009).

    Article  Google Scholar 

  19. 19.

    Huggel, C. et al. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat. Hazard Earth Sys. 5, 173–187 (2005).

    Article  Google Scholar 

  20. 20.

    Haeberli, W. et al. The Kolka-Karmadon rock/ice slide of 20 September 2002: an extraordinary event of historical dimensions in North Ossetia, Russian Caucasus. J. Glaciol. 50, 533–546 (2004).

    Article  Google Scholar 

  21. 21.

    Tian, L. D. et al. Two glaciers collapse in western Tibet. J. Glaciol. 63, 194–197 (2017).

    Article  Google Scholar 

  22. 22.

    Heim, A. Bergsturz und Menschenleben (Fretz und Wasmuth, Zurich, 1932).

    Google Scholar 

  23. 23.

    Chao, W. A. et al. Seismology-based early identification of dam-formation landquake events. Sci. Rep. 6, 19259 (2016).

    Article  Google Scholar 

  24. 24.

    Christen, M., Kowalski, J. & Bartelt, P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 63, 1–14 (2010).

    Article  Google Scholar 

  25. 25.

    Hungr, O. & McDougall, S. Two numerical models for landslide dynamic analysis. Comput. Geosci. 35, 978–992 (2009).

    Article  Google Scholar 

  26. 26.

    Schneider, D., Huggel, C., Haeberli, W. & Kaitna, R. Unraveling driving factors for large rock-ice avalanche mobility. Earth Surf. Process. Landf. 36, 1948–1966 (2011).

    Article  Google Scholar 

  27. 27.

    Yao, T. D. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2, 663–667 (2012).

    Article  Google Scholar 

  28. 28.

    Ye, Q. H. et al. Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s-2000-13. J. Glaciol. 63, 273–287 (2017).

    Article  Google Scholar 

  29. 29.

    Brun, F., Berthier, E., Wagnon, P., Kaab, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

    Article  Google Scholar 

  30. 30.

    Kääb, A., Treichler, D., Nuth, C. & Berthier, E. Contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere 9, 557–564 (2015).

    Article  Google Scholar 

  31. 31.

    Berthier, E., Schiefer, E., Clarke, G. K. C., Menounos, B. & Remy, F. Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nat. Geosci. 3, 92–95 (2010).

    Article  Google Scholar 

  32. 32.

    Tao, H., Borth, H., Fraedrich, K., Su, B. D. & Zhu, X. H. Drought and wetness variability in the Tarim River Basin and connection to large-scale atmospheric circulation. Int. J. Climatol. 34, 2678–2684 (2014).

    Article  Google Scholar 

  33. 33.

    Kapnick, S. B., Delworth, T. L., Ashfaq, M., Malyshev, S. & Milly, P. C. D. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci. 7, 834–840 (2014).

    Article  Google Scholar 

  34. 34.

    Zhang, G. et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 44, 5550–5560 (2017).

    Article  Google Scholar 

  35. 35.

    Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).

    Article  Google Scholar 

  36. 36.

    Boulton, G. S. & Jones, A. S. Stability of temperate ice caps and ice sheets resting on beds of deformable sediment. J. Glaciol. 24, 29–43 (1979).

    Article  Google Scholar 

  37. 37.

    Cuffey, K. & Paterson, W. S. B. The Physics of Glaciers 4th edn (Butterworth-Heinemann, Burlington, 2010).

  38. 38.

    Kamb, B. Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion. J. Geophys. Res. B 96, 16585–16595 (1991).

    Article  Google Scholar 

  39. 39.

    Tulaczyk, S., Kamb, W. B. & Engelhardt, H. F. Basal mechanics of Ice Stream B, West Antarctica 1. Till mechanics. J. Geophys. Res. B 105, 463–481 (2000).

    Article  Google Scholar 

  40. 40.

    Iverson, N. R., Hooyer, T. S. & Baker, R. W. Ring-shear studies of till deformation: Coulomb-plastic behavior and distributed strain in glacier beds. J. Glaciol. 44, 634–642 (1998).

    Article  Google Scholar 

  41. 41.

    Roering, J. J. et al. Beyond the angle of repose: A review and synthesis of landslide processes in response to rapid uplift, Eel River, Northern California. Geomorphology 236, 109–131 (2015).

    Article  Google Scholar 

  42. 42.

    Dunse, T. et al. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. Cryosphere 9, 197–215 (2015).

    Article  Google Scholar 

  43. 43.

    Fountain, A. G., Jacobel, R. W., Schlichting, R. & Jansson, P. Fractures as the main pathways of water flow in temperate glaciers. Nature 433, 618–621 (2005).

    Article  Google Scholar 

  44. 44.

    Drobyshev, V. N. Glacial catastrophe of 20 September 2002 in North Osetia. Russ. J. Earth Sci. 8, ES4004 (2006).

  45. 45.

    Chernomorets, S. S. et al. in Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment (eds Chen, C. L. & Major, J. J.) (Millpress, Rotterdam, 2007).

  46. 46.

    Zhang, W. Identification of glaciers with surge characteristics on the Tibetan Plateau. Ann. Glaciol. 16, 168–172 (1992).

    Article  Google Scholar 

  47. 47.

    Ugalde, F., Casassa, G., Marangunic, C., Mujica, R. & Peralta, C. El deslizamiento catastrófico del glaciar Aparejo: 35 años después [In Spanish]. In XiV Congresso Geologico Chileno (Geological Society of Chile, La Serena, 2015); https://www.researchgate.net/publication/314207074_El_deslizamiento_catastrofico_del_glaciar_Aparejo_35_anos_despues

  48. 48.

    Heybrock, W. Earthquakes as a cause of glacier avalanches in the Caucasus. Geogr. Rev. 25, 423–430 (1935).

    Article  Google Scholar 

  49. 49.

    Espizua, L. E. Fluctuations of the Rio-Del-Plomo glaciers. Geogr. Ann. A 68, 317–327 (1986).

    Article  Google Scholar 

  50. 50.

    Milana, J. P. A model of the Glaciar Horcones Inferior surge, Aconcagua region, Argentina. J. Glaciol. 53, 565–572 (2007).

    Article  Google Scholar 

  51. 51.

    Sorg, A., Kääb, A., Roesch, A., Bigler, C. & Stoffel, M. Contrasting responses of Central Asian rock glaciers to global warming. Sci. Rep. 5, 8228 (2015).

    Article  Google Scholar 

  52. 52.

    Kääb, A., Altena, B. & Mascaro, J. Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation. Nat. Hazard Earth Sys. 17, 627–639 (2017).

    Article  Google Scholar 

  53. 53.

    Planet Team. Planet Application Program Interface: In Space for Life on Earth (San Francisco, CA, accessed 17 December 2016); https://api.planet.com https://www.planet.com

  54. 54.

    Shean, D. E. et al. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. 116, 101–117 (2016).

    Article  Google Scholar 

  55. 55.

    Kronenberg, M. et al. Mass-balance reconstruction for Glacier No. 354, Tien Shan, from 2003 to 2014. Ann. Glaciol. 57, 92–102 (2016).

    Article  Google Scholar 

  56. 56.

    Nuth, C. & Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5, 271–290 (2011).

    Article  Google Scholar 

  57. 57.

    Berthier, E. et al. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote. Sens. Environ. 108, 327–338 (2007).

    Article  Google Scholar 

  58. 58.

    Berthier, E. et al. Glacier topography and elevation changes derived from Pleiades sub-meter stereo images. Cryosphere 8, 2275–2291 (2014).

    Article  Google Scholar 

  59. 59.

    Wang, D. & Kääb, A. Modeling glacier elevation change from DEM time series. Remote. Sens. 7, 10117–10142 (2015).

    Article  Google Scholar 

  60. 60.

    Berthier, E., Cabot, V., Vincent, C. & Six, D. Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area. Front. Earth Sci. 4, 63 (2016).

    Article  Google Scholar 

  61. 61.

    Round, V., Leinss, S., Huss, M., Haemmig, C. & Hajnsek, I. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram. Cryosphere 11, 723–739 (2017).

    Article  Google Scholar 

  62. 62.

    Kayastha, R. B. et al. Positive degree-day factors for ice ablation on four glaciers in the Nepalese Himalayas and Qinghai-Tibetan Plateau. Bull. Glaciol. Res. 20, 7–14 (2003).

    Google Scholar 

  63. 63.

    Gao, H. K., He, X. B., Ye, B. S. & Pu, J. C. Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008. Hydrol. Process. 26, 1593–1603 (2012).

    Article  Google Scholar 

  64. 64.

    Mölg, T., Maussion, F., Yang, W. & Scherer, D. The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere 6, 1445–1461 (2012).

    Article  Google Scholar 

  65. 65.

    Caidong, C. D. & Sorteberg, A. Modelled mass balance of Xibu glacier, Tibetan Plateau: sensitivity to climate change. J. Glaciol. 56, 235–248 (2010).

    Article  Google Scholar 

  66. 66.

    Gilbert, A. et al. Sensitivity of Barnes Ice Cap, Baffin Island, Canada, to climate state and internal dynamics. J. Geophys. Res. F. 121, 1516–1539 (2016).

    Article  Google Scholar 

  67. 67.

    Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M. & Bierkens, M. F. P. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci. 19, 4673–4687 (2015).

    Article  Google Scholar 

  68. 68.

    Gilbert, A., Gagliardini, O., Vincent, C. & Wagnon, P. A 3-D thermal regime model suitable for cold accumulation zones of polythermal mountain glaciers. J. Geophys. Res. F. 119, 1876–1893 (2014).

    Article  Google Scholar 

  69. 69.

    Wang, X., Nie, G. & Wang, D. Relationships between ground motion parameters and landslides induced by Wenchuan earthquake. Earthq. Sci. 23, 233–242 (2010).

    Article  Google Scholar 

  70. 70.

    Liu, K. S. & Tsai, Y. B. Attenuation relationships of peak ground acceleration and velocity for crustal earthquakes in Taiwan. Bull. Seismol. Soc. Am. 95, 1045–1058 (2005).

    Article  Google Scholar 

  71. 71.

    Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote. Sens. Environ. 185, 46–56 (2016).

    Article  Google Scholar 

  72. 72.

    Ashley, R. P. & Abrams, M. J. Mapping of limonite, clay mineral, and alunite contents of hydrothermally altered rocks in cuprite mining district, Nevada, using aircraft scanner imagery for 0.46-2.36 μm spectral region. Econ. Geol. 73, 307–307 (1978).

    Article  Google Scholar 

  73. 73.

    Mwaniki, M. W., Matthias, M. S. & Schellmann, G. Application of remote sensing technologies to map the structural geology of Central Region of Kenya. IEEE J. -Stars 8, 1855–1867 (2015).

    Google Scholar 

  74. 74.

    Song, C. Q., Huang, B. & Ke, L. H. Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multi-mission satellite altimetry. Hydrol. Process. 29, 2769–2781 (2015).

    Article  Google Scholar 

  75. 75.

    Zhang, G. et al. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 44, 252–260 (2017).

    Article  Google Scholar 

  76. 76.

    Ran, Y. H. et al. Distribution of permafrost in China: an overview of existing permafrost maps. Permafr. Periglac. 23, 322–333 (2012).

    Article  Google Scholar 

  77. 77.

    Fischer, L., Amann, F., Moore, J. R. & Huggel, C. Assessment of periglacial slope stability for the 1988 Tschierva rock avalanche (Piz Morteratsch, Switzerland). Eng. Geol. 116, 32–43 (2010).

    Article  Google Scholar 

  78. 78.

    Phillips, M. et al. Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps), February 2014. Earth Surf. Process. Landf. 42, 426–438 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the satellite data providers: Planet for their cubesat data via Planet’s Ambassadors Program, Copernicus/EU/ESA for Sentinel-1 and 2, CNES for Pleiades, USGS for Landsat 8, DLR for TerraSAR-X and TanDEM-X, and JPL and METI for ASTER. A.K. thanks J. Qiu for initial information about the first event and discussions. A.K., A.G. and D.T. acknowledge the Univ. Oslo EarthFlows initiative and funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC grant agreement no. 320816, and A.K. also acknowledges the ESA projects Glaciers_cci (4000109873/14/I-NB) and DUE GlobPermafrost (4000116196/15/IN-B). S.G., E.B. and F.B. acknowledge support from the French Space Agency (CNES) and the Programme National de Télédétection Spatiale grant PNTS-2016-01. J.K. acknowledges support from the NASA ASTER and HiMAT science teams. This study was coordinated within the IACS and IPA Standing Group on Glacier and Permafrost Hazards in Mountains (http://www.gaphaz.org).

Author information

Affiliations

Authors

Contributions

All authors conceived the study, and collected, processed and analysed data. A.K., S.L., S.G., E.B., F.B., J.S.K., G.L. and D.T. performed remote-sensing analyses, A.G. performed mass-balance and thermo-dynamical glacier modelling, Y.B., P.B. and S.G.E. performed avalanche modelling, W.-A.C. and F.G. performed seismic data analysis and modelling, W.G., L.T., T.Y. and A.G. carried out field surveys and reconnaissance, and S.G.E., D.F. and C.H. performed further analyses and interpretations. All authors contributed to writing the paper.

Corresponding author

Correspondence to Andreas Kääb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, methods and references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kääb, A., Leinss, S., Gilbert, A. et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geosci 11, 114–120 (2018). https://doi.org/10.1038/s41561-017-0039-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing