Isotopic evidence for oxygenated Mesoarchaean shallow oceans

Abstract

Mass-independent fractionation of sulfur isotopes (MIF-S) in Archaean sediments results from photochemical processing of atmospheric sulfur species in an oxygen-depleted atmosphere. Geological preservation of MIF-S provides evidence for microbial sulfate reduction (MSR) in low-sulfate Paleoarchaean (3.8–3.2 billion years ago (Ga)) and Neoarchaean (2.8–2.5 Ga) oceans, but the significance of MSR in Mesoarchaean (3.2–2.8 Ga) oceans is less clear. Here we present multiple sulfur and iron isotope data of early diagenetic pyrites from 2.97-Gyr-old stromatolitic dolomites deposited in a tidal flat environment of the Nsuze Group, Pongola Supergroup, South Africa. We identified consistently negative Δ33S values in pyrite, which indicates photochemical reactions under anoxic atmospheric conditions, but large mass-dependent sulfur isotope fractionations of ~30‰ in δ34S, identifying active MSR. Negative pyrite δ56Fe values (−1.31 to −0.88‰) record Fe oxidation in oxygen-bearing shallow oceans coupled with biogenic Fe reduction during diagenesis, consistent with the onset of local Fe cycling in oxygen oases ~3.0 Ga. We therefore suggest the presence of oxygenated near-shore shallow-marine environments with ≥5 μM sulfate at this time, in spite of the clear presence of an overall reduced Mesoarchaean atmosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Geology of the study area and information on the sample material.
Fig. 2: Multiple sulfur isotope plots of Archaean sedimentary pyrites.
Fig. 3: δ34S versus δ56Fe plot of Archaean sedimentary pyrites.
Fig. 4: Overview of the Fe and S cycling in the 2.97-Gyr-old Chobeni Formation.

References

  1. 1.

    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 765–769 (2000).

    Article  Google Scholar 

  2. 2.

    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

    Article  Google Scholar 

  3. 3.

    Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002).

    Article  Google Scholar 

  4. 4.

    Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).

    Article  Google Scholar 

  5. 5.

    Shen, Y., Farquhar, J., Masterson, A., Kaufman, A. J. & Buick, R. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279, 383–391 (2009).

    Article  Google Scholar 

  6. 6.

    Farquhar., J. et al. Pathways for Neoarchean pyrite formation constrained by mass-dependent sulfur isotopes. Proc. Natl. Acad. Sci. USA 100, 17638–17643 (2013).

    Article  Google Scholar 

  7. 7.

    Zhelezinskaia, I., Kaufman, A. J., Farquhar, J. & Cliff, J. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science 346, 742–744 (2014).

    Article  Google Scholar 

  8. 8.

    Fischer, W. W. et al. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. Proc. Natl. Acad. Sci. USA 111, 5468–5473 (2014).

    Article  Google Scholar 

  9. 9.

    Partridge, M. A., Golding, S. D., Baublys, K. A. & Young, A. Pyrite paragenesis and multiple sulfur isotope distribution in late Archean and early Paleoproterozoic Hamersley Basin sediments. Earth Planet. Sci. Lett. 272, 41–49 (2008).

    Article  Google Scholar 

  10. 10.

    Zerkle, A. L., Claire, M. W., Domagal-Goldmann, S. D., Farquhar, J. & Poulton, S. W. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5, 359–363 (2012).

    Article  Google Scholar 

  11. 11.

    Large, R. R. et al. Evidence for an intrabasinal source and multiple concentration processes in the formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Econ. Geol. 108, 1215–1241 (2013).

    Article  Google Scholar 

  12. 12.

    Farquhar, J. et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur levels. Nature 449, 706–710 (2007).

    Article  Google Scholar 

  13. 13.

    Ono, S., Beukes, N. J., Rumble, D. & Fogel, M. L. Early evolution of atmospheric oxygen from multiple sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. South Afr. J. Geol. 109, 97–108 (2006).

    Article  Google Scholar 

  14. 14.

    Guy, B. M. et al. A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambr. Res. 216–219, 208–231 (2012).

    Article  Google Scholar 

  15. 15.

    Guy, B. M., Ono, S., Gutzmer, J., Lin, Y. & Beukes, N. J. Sulfur sources of sedimentary ‘buckshot’ pyrite in the auriferous conglomerates of the Mesoarchean Witwatersrand and Ventersdorp Supergroups, Kaapvaal Craton, South Africa. Miner. Depos. 49, 751–755 (2014).

    Article  Google Scholar 

  16. 16.

    Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S. R. & Taylor, B. E. Sulphur isotope evidence for an oxic Archean atmosphere. Nature 442, 908–911 (2006).

    Article  Google Scholar 

  17. 17.

    Halevy, I. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. Proc. Natl. Acad. Sci. USA 44, 17644–17649 (2013).

    Article  Google Scholar 

  18. 18.

    Mukasa, S. B. & Wilson, A. H. Geochronological constraints on the magmatic and tectonic development of the Pongola Supergroup (Central Region), South Africa. Precambr. Res. 224, 268–286 (2013).

    Article  Google Scholar 

  19. 19.

    Beukes, N. J. & Cairncross, B. A lithostratigraphic–sedimentological reference profile for the late Archean Mozaan Group, Pongola Sequence: application to sequence stratigraphy and correlation with the Witwatersrand Supergroup. South Afr. J. Geol. 94, 44–69 (1991).

    Google Scholar 

  20. 20.

    Siahi, M., Hofmann, A., Hegner, E. & Master, S. Sedimentology and facies analysis of Mesoarchaean stromatolitic carbonate rocks of the Pongola Supergroup, South Africa. Precambr. Res. 278, 244–264 (2016).

    Article  Google Scholar 

  21. 21.

    Ossa Ossa, F. et al. Unusual manganese enrichment in the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa. Precambr Res. 281, 414–433 (2016).

    Article  Google Scholar 

  22. 22.

    Bolhar, R., Hofmann, A., Siahi, M., Feng, Y.-X. & Delvigne, C. A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the ~3.0 Ga Pongola Supergroup, Kaapvaal Craton. Geochim. Cosmochim. Acta 158, 57–78 (2015).

    Article  Google Scholar 

  23. 23.

    Guy, B. M., Beukes, N. J. & Gutzmer, J. Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. South Afr. J. Geol. 113, 195–228 (2010).

    Article  Google Scholar 

  24. 24.

    Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–539 (2013).

    Article  Google Scholar 

  25. 25.

    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

    Article  Google Scholar 

  26. 26.

    Stüeken, E. E., Catling, D. C. & Buick, R. Contributions to late Archaean sulphur cycling by life on land. Nat. Geosci. 5, 722–725 (2012).

    Article  Google Scholar 

  27. 27.

    Maynard, J. B., Sutton, S. J., Rumble, D. & Bekker, A. Mass-independent fractionated sulfur in Archean paleosols: a large reservoir of negative ∆33S anomaly on the early Earth. Chem. Geol. 362, 74–81 (2013).

    Article  Google Scholar 

  28. 28.

    Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).

    Article  Google Scholar 

  29. 29.

    Hegner, E., Kröner, A. & Hunt, P. A precise U–Pb zircon age for the Archean Pongola Supergroup volcanics in Swaziland. J. Afr. Earth. Sci. 18, 339–341 (1991).

    Article  Google Scholar 

  30. 30.

    Domagal-Goldman, S. D., Kasting, J. F., Johnston, D. T. & Farquhar, J. Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era. Earth Planet. Sci. Lett. 269, 29–40 (2008).

    Article  Google Scholar 

  31. 31.

    Marin-Carbonne, J. et al. Coupled Fe and S isotope variations in pyrite nodules from Archean shale. Earth Planet. Sci. Lett. 392, 67–79 (2014).

    Article  Google Scholar 

  32. 32.

    Kakegawa, T., Kawai, H. & Ohmoto, H. Origins of pyrites in the ~2.5 Ga Mt. McRae Shale, the Hamersley District, Western Australia. Geochim. Cosmochim. Acta 62, 3205–3220 (1999).

    Article  Google Scholar 

  33. 33.

    Ohmoto, H. & Goldhaber, M. B. in Geochemistry of Hydrothermal Ore Deposits 3rd edn (ed. Barnes, H. L.) 517–611 (Wiley, New York, 1997).

  34. 34.

    Machel, H. G. Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sed. Geol. 140, 143–175 (2001).

    Article  Google Scholar 

  35. 35.

    Watanabe, Y., Farquhar, J. & Ohmoto, H. Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324, 370–373 (2009).

    Article  Google Scholar 

  36. 36.

    Oduro, H. et al. Evidence of magnetic isotope effects during thermochemical sulfate reduction. Proc. Natl. Acad. Sci. USA 108, 17635–17638 (2011).

    Article  Google Scholar 

  37. 37.

    Hofmann, A., Bekker, A., Rouxel, O., Rumble, D. & Master, S. Multiple sulfur and iron isotope composition of detrital pyrite in Archean sedimentary rocks: a new tool for provenance analysis. Earth Planet. Sci. Lett. 286, 436–445 (2009).

    Article  Google Scholar 

  38. 38.

    Archer, C. & Vance, D. Coupled Fe and S isotope evidence for Archean microbial Fe(iii) and sulfate reduction. Geology 34, 153–156 (2006).

    Article  Google Scholar 

  39. 39.

    Busgigny, V. et al. Iron and sulfur isotope constraints on redox conditions associated with the 3.2 Ga barite deposits of the Mapepe Formation (Barberton Greenstone Belt, South Africa). Geochim. Cosmochim. Acta 210, 247–266 (2017).

    Article  Google Scholar 

  40. 40.

    Rouxel, O. J., Bekker, A. & Edwards, K. J. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307, 1088–1091 (2005).

    Article  Google Scholar 

  41. 41.

    Johnson, C. M., Beard, B. L. & Roden, E. E. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu. Rev. Earth Planet. Sci. 36, 457–493 (2008).

    Article  Google Scholar 

  42. 42.

    Butler, I. B., Archer, C., Vance, D., Oldroyd, A. & Rickard, D. Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet. Sci. Lett. 236, 430–442 (2005).

    Article  Google Scholar 

  43. 43.

    Wu, L., Druschel, G., Findlay, A., Beard, B. L. & Johnson, C. M. Experimental determination of iron isotope fractionations among Fe2+ aq–FeSaq–Mackinawite at low temperatures: Implications for the rock record. Geochim. Cosmochim. Acta 89, 46–61 (2012).

    Article  Google Scholar 

  44. 44.

    Crowe, S. A. et al. Photoferrotrophs thrive in an Archean ocean analogue. Proc. Natl. Acad. Sci. USA 105, 15938–15943 (2008).

    Article  Google Scholar 

  45. 45.

    Kurzweil, F. et al. Manganese oxide shuttling in pre-GOE oceans—evidence from molybdenum and iron isotopes. Earth Planet. Sci. Lett. 452, 69–87 (2016).

    Article  Google Scholar 

  46. 46.

    Busigny, V. et al. Iron isotopes in an Archean ocean analogue. Geochim. Cosmochim. Acta 133, 443–462 (2014).

    Article  Google Scholar 

  47. 47.

    Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    Article  Google Scholar 

  48. 48.

    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

    Article  Google Scholar 

  49. 49.

    Schoenberg, R. & von Blackenburg, F. An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS. Int. J. Mass. Spectrom. 242, 257–272 (2005).

    Article  Google Scholar 

  50. 50.

    Moeller, K. et al. Comparison of iron isotope variations in modern and Ordovician siliceous Fe oxyhydroxide deposits. Geochim. Cosmochim. Acta 126, 422–440 (2014).

    Article  Google Scholar 

  51. 51.

    Kurzweil, F. et al. Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá–Barrandian unit argue against deep ocean oxygenation during the Ediacaran. Geochim. Cosmochim. Acta 171, 121–142 (2015).

    Article  Google Scholar 

  52. 52.

    Dauphas, N. & Rouxel, O. Mass spectrometry and natural variations of iron isotopes. Mass. Spectrom. Rev. 25, 515–550 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

B.E. acknowledges financial support by a Postdoctoral Fellowship of the University of Johannesburg, a Travel and Equipment Fellowship of the National Research Foundation of South Africa and an Intuitional Strategy Fellowship of the University of Tübingen (Deutsche Forschungsgemeinschaft, ZUK 63). The Stable Isotope Laboratory at McGill University was supported by the FQRNT through the GEOTOP research centre.

Author information

Affiliations

Authors

Contributions

B.E. and A.H. designed the study. A.H. provided samples. B.E., M.W. and T.H.B. generated data. B.E., M.W., B.A.W. and R.S. interpreted the data. B.E. wrote the paper with input from all the co-authors.

Corresponding author

Correspondence to Benjamin Eickmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables with geological setting and sample description.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eickmann, B., Hofmann, A., Wille, M. et al. Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nature Geosci 11, 133–138 (2018). https://doi.org/10.1038/s41561-017-0036-x

Download citation

Further reading