Article | Published:

Isotopic evidence for oxygenated Mesoarchaean shallow oceans

Nature Geosciencevolume 11pages133138 (2018) | Download Citation


Mass-independent fractionation of sulfur isotopes (MIF-S) in Archaean sediments results from photochemical processing of atmospheric sulfur species in an oxygen-depleted atmosphere. Geological preservation of MIF-S provides evidence for microbial sulfate reduction (MSR) in low-sulfate Paleoarchaean (3.8–3.2 billion years ago (Ga)) and Neoarchaean (2.8–2.5 Ga) oceans, but the significance of MSR in Mesoarchaean (3.2–2.8 Ga) oceans is less clear. Here we present multiple sulfur and iron isotope data of early diagenetic pyrites from 2.97-Gyr-old stromatolitic dolomites deposited in a tidal flat environment of the Nsuze Group, Pongola Supergroup, South Africa. We identified consistently negative Δ33S values in pyrite, which indicates photochemical reactions under anoxic atmospheric conditions, but large mass-dependent sulfur isotope fractionations of ~30‰ in δ34S, identifying active MSR. Negative pyrite δ56Fe values (−1.31 to −0.88‰) record Fe oxidation in oxygen-bearing shallow oceans coupled with biogenic Fe reduction during diagenesis, consistent with the onset of local Fe cycling in oxygen oases ~3.0 Ga. We therefore suggest the presence of oxygenated near-shore shallow-marine environments with ≥5 μM sulfate at this time, in spite of the clear presence of an overall reduced Mesoarchaean atmosphere.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 765–769 (2000).

  2. 2.

    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

  3. 3.

    Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002).

  4. 4.

    Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).

  5. 5.

    Shen, Y., Farquhar, J., Masterson, A., Kaufman, A. J. & Buick, R. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279, 383–391 (2009).

  6. 6.

    Farquhar., J. et al. Pathways for Neoarchean pyrite formation constrained by mass-dependent sulfur isotopes. Proc. Natl. Acad. Sci. USA 100, 17638–17643 (2013).

  7. 7.

    Zhelezinskaia, I., Kaufman, A. J., Farquhar, J. & Cliff, J. Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science 346, 742–744 (2014).

  8. 8.

    Fischer, W. W. et al. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. Proc. Natl. Acad. Sci. USA 111, 5468–5473 (2014).

  9. 9.

    Partridge, M. A., Golding, S. D., Baublys, K. A. & Young, A. Pyrite paragenesis and multiple sulfur isotope distribution in late Archean and early Paleoproterozoic Hamersley Basin sediments. Earth Planet. Sci. Lett. 272, 41–49 (2008).

  10. 10.

    Zerkle, A. L., Claire, M. W., Domagal-Goldmann, S. D., Farquhar, J. & Poulton, S. W. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5, 359–363 (2012).

  11. 11.

    Large, R. R. et al. Evidence for an intrabasinal source and multiple concentration processes in the formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Econ. Geol. 108, 1215–1241 (2013).

  12. 12.

    Farquhar, J. et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur levels. Nature 449, 706–710 (2007).

  13. 13.

    Ono, S., Beukes, N. J., Rumble, D. & Fogel, M. L. Early evolution of atmospheric oxygen from multiple sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. South Afr. J. Geol. 109, 97–108 (2006).

  14. 14.

    Guy, B. M. et al. A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambr. Res. 216–219, 208–231 (2012).

  15. 15.

    Guy, B. M., Ono, S., Gutzmer, J., Lin, Y. & Beukes, N. J. Sulfur sources of sedimentary ‘buckshot’ pyrite in the auriferous conglomerates of the Mesoarchean Witwatersrand and Ventersdorp Supergroups, Kaapvaal Craton, South Africa. Miner. Depos. 49, 751–755 (2014).

  16. 16.

    Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S. R. & Taylor, B. E. Sulphur isotope evidence for an oxic Archean atmosphere. Nature 442, 908–911 (2006).

  17. 17.

    Halevy, I. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. Proc. Natl. Acad. Sci. USA 44, 17644–17649 (2013).

  18. 18.

    Mukasa, S. B. & Wilson, A. H. Geochronological constraints on the magmatic and tectonic development of the Pongola Supergroup (Central Region), South Africa. Precambr. Res. 224, 268–286 (2013).

  19. 19.

    Beukes, N. J. & Cairncross, B. A lithostratigraphic–sedimentological reference profile for the late Archean Mozaan Group, Pongola Sequence: application to sequence stratigraphy and correlation with the Witwatersrand Supergroup. South Afr. J. Geol. 94, 44–69 (1991).

  20. 20.

    Siahi, M., Hofmann, A., Hegner, E. & Master, S. Sedimentology and facies analysis of Mesoarchaean stromatolitic carbonate rocks of the Pongola Supergroup, South Africa. Precambr. Res. 278, 244–264 (2016).

  21. 21.

    Ossa Ossa, F. et al. Unusual manganese enrichment in the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa. Precambr Res. 281, 414–433 (2016).

  22. 22.

    Bolhar, R., Hofmann, A., Siahi, M., Feng, Y.-X. & Delvigne, C. A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the ~3.0 Ga Pongola Supergroup, Kaapvaal Craton. Geochim. Cosmochim. Acta 158, 57–78 (2015).

  23. 23.

    Guy, B. M., Beukes, N. J. & Gutzmer, J. Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. South Afr. J. Geol. 113, 195–228 (2010).

  24. 24.

    Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–539 (2013).

  25. 25.

    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

  26. 26.

    Stüeken, E. E., Catling, D. C. & Buick, R. Contributions to late Archaean sulphur cycling by life on land. Nat. Geosci. 5, 722–725 (2012).

  27. 27.

    Maynard, J. B., Sutton, S. J., Rumble, D. & Bekker, A. Mass-independent fractionated sulfur in Archean paleosols: a large reservoir of negative ∆33S anomaly on the early Earth. Chem. Geol. 362, 74–81 (2013).

  28. 28.

    Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).

  29. 29.

    Hegner, E., Kröner, A. & Hunt, P. A precise U–Pb zircon age for the Archean Pongola Supergroup volcanics in Swaziland. J. Afr. Earth. Sci. 18, 339–341 (1991).

  30. 30.

    Domagal-Goldman, S. D., Kasting, J. F., Johnston, D. T. & Farquhar, J. Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era. Earth Planet. Sci. Lett. 269, 29–40 (2008).

  31. 31.

    Marin-Carbonne, J. et al. Coupled Fe and S isotope variations in pyrite nodules from Archean shale. Earth Planet. Sci. Lett. 392, 67–79 (2014).

  32. 32.

    Kakegawa, T., Kawai, H. & Ohmoto, H. Origins of pyrites in the ~2.5 Ga Mt. McRae Shale, the Hamersley District, Western Australia. Geochim. Cosmochim. Acta 62, 3205–3220 (1999).

  33. 33.

    Ohmoto, H. & Goldhaber, M. B. in Geochemistry of Hydrothermal Ore Deposits 3rd edn (ed. Barnes, H. L.) 517–611 (Wiley, New York, 1997).

  34. 34.

    Machel, H. G. Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sed. Geol. 140, 143–175 (2001).

  35. 35.

    Watanabe, Y., Farquhar, J. & Ohmoto, H. Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324, 370–373 (2009).

  36. 36.

    Oduro, H. et al. Evidence of magnetic isotope effects during thermochemical sulfate reduction. Proc. Natl. Acad. Sci. USA 108, 17635–17638 (2011).

  37. 37.

    Hofmann, A., Bekker, A., Rouxel, O., Rumble, D. & Master, S. Multiple sulfur and iron isotope composition of detrital pyrite in Archean sedimentary rocks: a new tool for provenance analysis. Earth Planet. Sci. Lett. 286, 436–445 (2009).

  38. 38.

    Archer, C. & Vance, D. Coupled Fe and S isotope evidence for Archean microbial Fe(iii) and sulfate reduction. Geology 34, 153–156 (2006).

  39. 39.

    Busgigny, V. et al. Iron and sulfur isotope constraints on redox conditions associated with the 3.2 Ga barite deposits of the Mapepe Formation (Barberton Greenstone Belt, South Africa). Geochim. Cosmochim. Acta 210, 247–266 (2017).

  40. 40.

    Rouxel, O. J., Bekker, A. & Edwards, K. J. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307, 1088–1091 (2005).

  41. 41.

    Johnson, C. M., Beard, B. L. & Roden, E. E. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu. Rev. Earth Planet. Sci. 36, 457–493 (2008).

  42. 42.

    Butler, I. B., Archer, C., Vance, D., Oldroyd, A. & Rickard, D. Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet. Sci. Lett. 236, 430–442 (2005).

  43. 43.

    Wu, L., Druschel, G., Findlay, A., Beard, B. L. & Johnson, C. M. Experimental determination of iron isotope fractionations among Fe2+ aq–FeSaq–Mackinawite at low temperatures: Implications for the rock record. Geochim. Cosmochim. Acta 89, 46–61 (2012).

  44. 44.

    Crowe, S. A. et al. Photoferrotrophs thrive in an Archean ocean analogue. Proc. Natl. Acad. Sci. USA 105, 15938–15943 (2008).

  45. 45.

    Kurzweil, F. et al. Manganese oxide shuttling in pre-GOE oceans—evidence from molybdenum and iron isotopes. Earth Planet. Sci. Lett. 452, 69–87 (2016).

  46. 46.

    Busigny, V. et al. Iron isotopes in an Archean ocean analogue. Geochim. Cosmochim. Acta 133, 443–462 (2014).

  47. 47.

    Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

  48. 48.

    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

  49. 49.

    Schoenberg, R. & von Blackenburg, F. An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS. Int. J. Mass. Spectrom. 242, 257–272 (2005).

  50. 50.

    Moeller, K. et al. Comparison of iron isotope variations in modern and Ordovician siliceous Fe oxyhydroxide deposits. Geochim. Cosmochim. Acta 126, 422–440 (2014).

  51. 51.

    Kurzweil, F. et al. Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá–Barrandian unit argue against deep ocean oxygenation during the Ediacaran. Geochim. Cosmochim. Acta 171, 121–142 (2015).

  52. 52.

    Dauphas, N. & Rouxel, O. Mass spectrometry and natural variations of iron isotopes. Mass. Spectrom. Rev. 25, 515–550 (2006).

Download references


B.E. acknowledges financial support by a Postdoctoral Fellowship of the University of Johannesburg, a Travel and Equipment Fellowship of the National Research Foundation of South Africa and an Intuitional Strategy Fellowship of the University of Tübingen (Deutsche Forschungsgemeinschaft, ZUK 63). The Stable Isotope Laboratory at McGill University was supported by the FQRNT through the GEOTOP research centre.

Author information

Author notes

    • Benjamin Eickmann

    Present address: Department of Geosciences, University of Tübingen, Tübingen, Germany

    • Martin Wille

    Present address: Institute of Geological Sciences, University of Bern, Bern, Switzerland


  1. Department of Geology, University of Johannesburg, Johannesburg, South Africa

    • Benjamin Eickmann
    •  & Axel Hofmann
  2. Department of Geosciences, University of Tübingen, Tübingen, Germany

    • Martin Wille
    •  & Ronny Schoenberg
  3. Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada

    • Thi Hao Bui
    •  & Boswell A. Wing
  4. Department of Geological Sciences, University of Colorado, Boulder, CO, USA

    • Boswell A. Wing


  1. Search for Benjamin Eickmann in:

  2. Search for Axel Hofmann in:

  3. Search for Martin Wille in:

  4. Search for Thi Hao Bui in:

  5. Search for Boswell A. Wing in:

  6. Search for Ronny Schoenberg in:


B.E. and A.H. designed the study. A.H. provided samples. B.E., M.W. and T.H.B. generated data. B.E., M.W., B.A.W. and R.S. interpreted the data. B.E. wrote the paper with input from all the co-authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Benjamin Eickmann.

Supplementary information

  1. Supplementary Information

    Supplementary Figures and Tables with geological setting and sample description.

About this article

Publication history





Further reading