Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs

Abstract

The origin of late Cenozoic intraplate volcanism over the western United States is debated. One important reason is the lack of a clear understanding of the mantle dynamics during this volcanic history. Here we reconstruct the mantle thermal states beneath North America since 20 million years ago using a hybrid inverse geodynamic model with data assimilation. The model simultaneously satisfies the past subduction kinematics, present mantle tomographic image and the volcanic history. We find that volcanism in both the Yellowstone volcanic province and the Basin and Range province corresponds to a similar eastward-intruding mantle derived from beneath the Pacific Ocean and driven mostly by the sinking Farallon slab below the central-eastern United States. The hot mantle that forms the Columbia River flood basalt and subsequent Yellowstone–Newberry hotspot tracks first enters the western United States through tears within the Juan de Fuca slab. Subsequent coexistence of the westward asthenospheric flow above the retreating Juan de Fuca slab and eastward-propagating mantle beyond the back-arc region reproduces the bifurcating hotspot chains. A similar but weaker heat source intrudes below the Basin and Range around the southern edge of the slab, and can explain the diffuse basaltic volcanism in this region. According to our models, the putative Yellowstone plume contributes little to the formation of the Yellowstone volcanic province.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Topography of western United States.
Fig. 2: Evolution of mantle thermal structures along the NB–YS hotspot tracks from the reference model.
Fig. 3: 3D representation of mantle evolution in the reference model.
Fig. 4: Post-CRFB evolution of hot mantle anomalies at 70 km and the history of volcanisms.
Fig. 5: Evolution of mantle flow and volcanism in the western United States.

Change history

  • 19 February 2018

    In the version of this Article originally published, data points representing mafic eruptions were missing from Fig. 4b, the corrected version is shown below. Furthermore, the authors omitted to include the following acknowledgements to the provider of the computational resources: “This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work is also part of the ‘PRAC Title 4-D Geodynamic Modeling With Data Assimilation: Origin Of Intra-Plate Volcanism In The Pacific Northwest’ PRAC allocation support by the National Science Foundation (award number ACI 1516586). This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.” Figure 4 and the Acknowledgements section have been updated in the online version of the Article.

References

  1. 1.

    Pierce, K. L. & Morgan, L. A. The track of the Yellowstone hot spot: volcanism, faulting, and uplift. Geol. Soc. Am. Mem. 179, 1–54 (1992).

    Google Scholar 

  2. 2.

    Camp, V. E. & Ross, M. E. Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest. J. Geophys. Res. 109, B8 (2004).

    Article  Google Scholar 

  3. 3.

    Smith, R. B., Jordan, M., Steinberger, B., Puskas, C. M., Farrell, J., Waite, G. P., Husen, S., Chang, W. L. & O’Connell, R. Geodynamics of the Yellowstone hotspot and mantle plume: seismic and GPS imaging, kinematics, and mantle flow. J. Volcanol. Geoth. Res. 188, 26–56 (2009).

    Article  Google Scholar 

  4. 4.

    Kincaid, C., Druken, K. A., Griffiths, R. W. & Stegman, D. R. Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow. Nat. Geosci. 6, 395–399 (2013).

    Article  Google Scholar 

  5. 5.

    Carlson, R. W. & Hart, W. K. Crustal genesis on the Oregon plateau. J. Geophys. Res. 92, 6191–6206 (1987).

    Article  Google Scholar 

  6. 6.

    Christiansen, R. L., Foulger, G. R. & Evans, J. R. Upper-mantle origin of the Yellowstone hotspot. Geol. Soc. Am. Bull. 114, 1245–1256 (2002).

    Article  Google Scholar 

  7. 7.

    James, D., Fouch, M., Carlson, R. & Roth, J. Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Planet. Sci. Lett. 311, 124–135 (2011).

    Article  Google Scholar 

  8. 8.

    Liu, L. & Stegman, D. R. Origin of the Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature 482, 386–390 (2012).

    Article  Google Scholar 

  9. 9.

    King, S. D. & Anderson, D. L. Edge-driven convection. Earth Planet. Sci. Lett. 160, 289–296 (1998).

    Article  Google Scholar 

  10. 10.

    Hales, T. C., Abt, D. L., Humphreys, E. D. & Roering, J. J. A lithospheric instability origin for Columbia River Flood Basalts and Wallowa Mountains uplift in northeast Oregon. Nature 438, 842–845 (2005).

    Article  Google Scholar 

  11. 11.

    Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M. & Chandler, M. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  12. 12.

    van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence of deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  13. 13.

    Grand, S. P. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond. A 360, 2475–2491 (2002).

    Article  Google Scholar 

  14. 14.

    Ren, Y., Stutzmann, E., van Der Hilst, R. D. & Besse, J. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history. J. Geophys. Res. 112, B004154 (2007).

    Article  Google Scholar 

  15. 15.

    Sigloch, K. Mantle provinces under North America from multifrequency P wave tomography. Geochem. Geophys. Geosyst. 12, Q02W08 (2011).

    Article  Google Scholar 

  16. 16.

    van der Meer, D. G., Spakman, W., Van Hinsbergen, D. J. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci. 3, 36–40 (2010).

    Article  Google Scholar 

  17. 17.

    Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).

    Article  Google Scholar 

  18. 18.

    Liu, L. The ups and downs of North America: evaluating the role of mantle dynamic topography since the Mesozoic. Rev. Geophys. 53, 1022–1049 (2015).

    Article  Google Scholar 

  19. 19.

    Leonard, T. & Liu, L. The role of a mantle plume in the formation of Yellowstone volcanism. Geophys. Res. Lett. 43, 1132–1139 (2016).

    Article  Google Scholar 

  20. 20.

    Schmandt, B. & Lin, F. C. P & S wave tomography of the mantle beneath the United States. Geophys. Res. Lett. 41, 6342–6349 (2014).

    Article  Google Scholar 

  21. 21.

    Liu, L. & Stegman, D. R. Segmentation of the Farallon slab. Earth Planet. Sci. Lett. 311, 1–10 (2011).

    Article  Google Scholar 

  22. 22.

    Liu, L. & Gurnis, M. Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. J. Geophys. Res. 113, B08405 (2008).

    Google Scholar 

  23. 23.

    Zhou, Q. & Liu, L. A hybrid approach to data assimilation for reconstructing the evolution of mantle dynamics. Geochem. Geophys. Geosyst. 18, C007116 (2017).

  24. 24.

    Schmandt, B., Dueker, K. G., Humphreys, E. D. & Hansen, S. H. Hot mantle upwelling across the 660 beneath Yellowstone. Earth Planet. Sci. Lett. 331–332, 224–236 (2012).

    Article  Google Scholar 

  25. 25.

    Gao, S. S. & Liu, K. H. Mantle transition zone discontinuities beneath the contiguous United States. J. Geophys. Res. 119, 6452–6468 (2015).

    Article  Google Scholar 

  26. 26.

    Leeman, W. P., Schutt, D. L. & Hughes, S. S. Thermal structure beneath the Snake River Plain: implications for the Yellowstone hotspot. J. Volcanol. Geoth. Res. 188, 57–67 (2009).

    Article  Google Scholar 

  27. 27.

    Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  28. 28.

    Hier-Majumder, S. & Tauzin, B. Pervasive upper mantle melting beneath the western US. Earth Planet. Sci. Lett. 463, 25–35 (2017).

    Article  Google Scholar 

  29. 29.

    Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N. & Pugmire, D. Global adjoint tomography: first-generation model. Geophys. J. Int. 207, 1739–1766 (2106).

  30. 30.

    Huang, Z. & Zhao, D. Mapping P-wave azimuthal anisotropy in the crust and upper mantle beneath the United States. Phys. Earth Planet. Int. 225, 28–40 (2013).

    Article  Google Scholar 

  31. 31.

    McQuarrie, N. & Wernicke, B. P. An animated tectonic reconstruction of southwestern North America since 36 Ma. Geosphere 1, 147–172 (2005).

    Article  Google Scholar 

  32. 32.

    Humphreys, E. D. Post-Laramide removal of the Farallon slab, western United States. Geology 23, 987–990 (1995).

    Article  Google Scholar 

  33. 33.

    DePaolo, D. J. & Daley, E. E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chem. Geol. 169, 157–185 (2000).

    Article  Google Scholar 

  34. 34.

    Gans, P. B. & Bohrson, W. A. Suppression of volcanism during rapid extension in the Basin and Range Province, United States. Science 279, 66–68 (1998).

    Article  Google Scholar 

  35. 35.

    Roy, M., Jordan, T. H. & Pederson, J. Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere. Nature 459, 978–982 (2009).

    Article  Google Scholar 

  36. 36.

    Reid, M. R., Bouchet, R. A., Blichert-Toft, J., Levander, A., Liu, K., Miller, M. S. & Ramos, F. C. Melting under the Colorado Plateau, USA. Geology 40, 387–390 (2012).

    Article  Google Scholar 

  37. 37.

    Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

    Article  Google Scholar 

  38. 38.

    McCurry, M. & Rodgers, D. W. Mass transfer along the Yellowstone hotspot track I: petrologic constraints on the volume of mantle-derived magma. J. Volcanol. Geotherm. Res. 188, 86–98 (2009).

    Article  Google Scholar 

  39. 39.

    Carlson, R. W., Pearson, D. G. & James, D. E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43, RG1001 (2005).

    Article  Google Scholar 

  40. 40.

    Griffin, W. L., O’Reilly, S. Y., Doyle, B. J., Pearson, N. J., Coopersmith, H., Kivi, K. & Pokhilenko, N. Lithosphere mapping beneath the North American plate. Lithosphere 77, 873–922 (2004).

    Google Scholar 

  41. 41.

    Mareschal, J. C. & Jaupart, C. Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth Planet. Sci. Lett. 223, 65–77 (2004).

    Article  Google Scholar 

  42. 42.

    Hansen, S. M., Dueker, K. & Schmandt, B. Thermal classification of lithospheric discontinuities beneath USArray. Earth Planet. Sci. Lett. 431, 36–47 (2015).

    Article  Google Scholar 

  43. 43.

    Humphreys, E. D., Schmandt, B., Bezada, M. J. & Perry-Houts, J. Recent craton growth by slab stacking beneath Wyoming. Earth Planet. Sci. Lett. 429, 170–180 (2015).

    Article  Google Scholar 

  44. 44.

    Gerya, T. V., Yuen, D. A. & Sevre, E. O. D. Dynamic causes for incipient magma chambers above slabs. Geology 32, 89–92 (2004).

    Article  Google Scholar 

  45. 45.

    Rodgers, D.W., Ore, H. T., Bobo, R. T., McQuarrie, N. & Zentner, N. in Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province (eds Bonnichsen, B., White, C. M. & McCurry, M.) 121–155 (Bulletin 30, Idaho Geological Survey, Moscow, 2002).

  46. 46.

    Ballmer, M. D., Conrad, C. P., Smith, E. I. & Johnsen, R. Intraplate volcanism at the edges of the Colorado Plateau sustained by a combination of triggered edge‐driven convection and shear‐driven upwelling. Geochem. Geophys. Geosyst. 16, 366–379 (2015).

    Article  Google Scholar 

  47. 47.

    Darold, A. & Humphreys, E. D. Upper mantle seismic structure beneath the Pacific Northwest: A plume-triggered delamination origin for the Columbia River flood basalt eruptions. Earth Planet. Sci. Lett. 365, 232–242 (2013).

    Article  Google Scholar 

  48. 48.

    Huang, H. H., Lin, F. C., Schmandt, B., Farrell, J., Smith, R. B. & Tsai, V. C. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348, 773–776 (2015).

    Article  Google Scholar 

  49. 49.

    Asahara, Y. & Ohtani, E. Melting relations of the hydrous primitive mantle in the CMAS–H2O system at high pressures and temperatures, and implications for generation of komatiites. Phys. Earth Planet. Inter. 125, 31–44 (2011).

    Article  Google Scholar 

  50. 50.

    Green, D. H. Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle. Phys. Chem. Minerals 42, 95–122 (2015).

    Article  Google Scholar 

  51. 51.

    Green, D. H. & O’Hara, M. J. Composition of basaltic magmas as indicators of conditions of origin: application to oceanic volcanism. Phil. Trans. R. Soc. A 268, 707–725 (1971).

    Article  Google Scholar 

Download references

Acknowledgements

The numerical models were performed using CitcomS (www.geodynamics.org) and GPlates (www.gplates.org). Figures were prepared using the GMT software package (https://www.soest.hawaii.edu/gmt/). This work is supported by National Science Foundation grant EAR-1345135, EAR-1554554. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work is also part of the “PRAC Title 4-D Geodynamic Modeling With Data Assimilation: Origin Of Intra-Plate Volcanism In The Pacific Northwest” PRAC allocation support by the National Science Foundation (award number ACI 1516586). This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.

Author information

Affiliations

Authors

Contributions

Q.Z. carried out all the numerical simulations. L.L. designed and oversaw the project. Both Q.Z. and L.L. contributed to the results interpretation and manuscript preparation. J.H. contributed to the figure preparation.

Corresponding author

Correspondence to Quan Zhou.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41561-018-0062-3.

Supplementary information

Supplementary Information

Supplementary description and figures.

Videos

Supplementary Movie 1

Mantle flow for model A4.

Supplementary Movie 2

Mantle flow for model A5.

Supplementary Movie 3

Mantle flow for model A6.

Supplementary Movie 4

Mantle flow for model A7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Liu, L. & Hu, J. Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs. Nature Geosci 11, 70–76 (2018). https://doi.org/10.1038/s41561-017-0035-y

Download citation

Further reading