Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Water-rich sublithospheric melt channel in the equatorial Atlantic Ocean

Abstract

The lithosphere–asthenosphere boundary is the most extensive boundary on Earth, separating the mobile plate above from the convecting mantle below, but its nature remains a matter of debate. Using an ultra-deep seismic reflection technique, here we show a systematic seismic image of two deep reflectors that we interpret as the upper and lower limits of the lithosphere–asthenosphere boundary beneath a 40–70-million-year-old oceanic lithosphere in the Atlantic Ocean. These two reflections correspond to 1,260 °C and 1,355 °C isotherms and bound a low-velocity channel, suggesting that the lithosphere–asthenosphere boundary is thermally controlled. We observe a clear age dependency of this sublithospheric channel: its depth increases with age from 72 km where it is 40-Myr-old to 88 km where it is 70-Myr-old, whereas its thickness decreases with age from 18 km to 12 km. We suggest that partial melting, facilitated by water, is the main mechanism responsible for the low-velocity channel. The required water concentration for melting increases with age; nevertheless, its corresponding total mass remains relatively constant, suggesting that most of the volatiles in the oceanic sublithospheric channel originate from a horizontal flux near the ridge axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study area of the seismic survey.
Fig. 2: Time-domain seismic image.
Fig. 3: The LAB image.
Fig. 4: The LAB as a function of age.

Similar content being viewed by others

References

  1. Eaton, D. W. et al. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos 109, 1–22 (2009).

    Article  Google Scholar 

  2. Priestley, K. & McKenzie, D. The thermal structure of the lithosphere from shear wave velocities. Earth Planet. Sci. Lett. 244, 285–301 (2006).

    Article  Google Scholar 

  3. Burgos, G. et al. Oceanic lithosphere-asthenosphere boundary from surface wave dispersion data. J. Geophys. Res. Solid Earth 119, 1079–1093 (2014).

    Article  Google Scholar 

  4. Kawakatsu, H. et al. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science 324, 499–502 (2009).

    Article  Google Scholar 

  5. Rychert, C. A. & Shearer, P. M. Imaging the lithosphere-asthenosphere boundary beneath the Pacific using SS waveform modeling. J. Geophys. Res. Solid Earth 116, Q0AK10 (2011).

    Article  Google Scholar 

  6. Olugboji, T. M., Park, J., Karato, S. I. & Shinohara, M. Nature of the seismic lithosphere-asthenosphere boundary within normal oceanic mantle from high-resolution receiver functions. Geochem. Geophys. Geosyst. 17, 1265–1282 (2016).

    Article  Google Scholar 

  7. Tharimena, S., Rychert, C. A. & Harmon, N. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau. Earth Planet. Sci. Lett. 450, 62–70 (2016).

    Article  Google Scholar 

  8. Stern, T. A. et al. A seismic reflection image for the base of a tectonic plate. Nature 518, 85 (2015).

    Article  Google Scholar 

  9. Karato, S. I. On the origin of the asthenosphere. Earth Planet. Sci. Lett. 321, 95–103 (2012).

    Article  Google Scholar 

  10. Hirschmann, M. M. Partial melt in the oceanic low velocity zone. Phys. Earth Planet. Inter. 179, 60–71 (2010).

    Article  Google Scholar 

  11. Machida, S., Kogiso, T. & Hirano, N. Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2. Nat. Commun. 8, 14302 (2017).

    Article  Google Scholar 

  12. Tharimena, S., Rychert, C. & Harmon, N. A unified continental thickness from seismology and diamonds suggests a melt-defined plate. Science 357, 580–583 (2017).

    Article  Google Scholar 

  13. Darros De Matos, R. M. Atlantic Rifts and Continental Margins (American Geophysical Union, Washington, DC, 2000); 331–354.

    Book  Google Scholar 

  14. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008).

    Article  Google Scholar 

  15. White, R. S., McKenzie, D. & O’Nions, R. K. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res. Solid Earth 97, 19683–19715 (1992).

    Article  Google Scholar 

  16. Pasyanos, M., Masters, T., Laske, G. & Ma, Z. LITHO1.0: An updated crust and lithospheric model of the Earth. J. Geophys. Res. Solid Earth 119, 2153–2173 (2014).

    Article  Google Scholar 

  17. Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–129 (1992).

    Article  Google Scholar 

  18. McKenzie, D., Jackson, J. & Priestley, K. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233, 337–349 (2005).

    Article  Google Scholar 

  19. Sarafian, E., Gaetani, G. A., Hauri, E. H. & Sarafian, A. R. Experimental constraints on the damp peridotite solidus and oceanic mantle potential temperature. Science 355, 942–945 (2017).

    Article  Google Scholar 

  20. Naif, S., Key, K., Constable, S. & Evans, R. L. Melt-rich channel observed at the lithosphere–asthenosphere boundary. Nature 495, 356 (2013).

    Article  Google Scholar 

  21. Faul, U. H. & Jackson, I. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett. 234, 119–134 (2005).

    Article  Google Scholar 

  22. Ghahremani, F. Effect of grain boundary sliding on anelasticity of polycrystals. Int. J. Solids Struct. 16, 825–845 (1980).

    Article  Google Scholar 

  23. Taylor, M. A. J. & Singh, S. C. Composition and microstructure of magma bodies from effective medium theory. Geophys. J. Int. 149, 15–21 (2002).

    Article  Google Scholar 

  24. Holtzman, B. K. & Kohlstedt, D. L. Stress-driven melt segregation and strain partitioning in partially molten rocks: Effects of stress and strain. J. Petrol. 48, 2379–2406 (2007).

    Article  Google Scholar 

  25. Hirschmann, M. M., Tenner, T., Aubaud, C. & Withers, A. C. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Phys. Earth Planet. Int. 176, 54–68 (2009).

    Article  Google Scholar 

  26. Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

    Article  Google Scholar 

  27. Masuti, S., Barbot, S. D., Karato, S. I., Feng, L. & Banerjee, P. Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake. Nature 538, 373–377 (2016).

    Article  Google Scholar 

  28. McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).

    Article  Google Scholar 

  29. Asimow, P. D. & Langmuir, C. H. The importance of water to oceanic mantle melting regimes. Nature 421, 815 (2003).

    Article  Google Scholar 

  30. Keller, T., Katz, R. F. & Hirschmann, M. M. Volatiles beneath mid-ocean ridges: Deep melting, channelised transport, focusing, and metasomatism. Earth Planet. Sci. Lett. 464, 55–68 (2017).

    Article  Google Scholar 

  31. Keller, T. & Katz, R. F. The role of volatiles in reactive melt transport in the asthenosphere. J. Petrology 57, 1073–1108 (2016).

    Article  Google Scholar 

  32. Plank, T. & Langmuir, C. H. Effects of the melting regime on the composition of the oceanic crust. J. Geophys. Res. Solid Earth 97, 19749–19770 (1992).

    Article  Google Scholar 

  33. Michael, P. Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O. Earth Planet. Sci. Lett. 131, 301–320 (1995).

    Article  Google Scholar 

  34. Danyushevsky, L. V., Eggins, S. M., Falloon, T. J. & Christie, D. M. H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; part I: incompatible behaviour, implications for mantle storage, and origin of regional variations. J. Petrol. 41, 1329–1364 (2000).

    Article  Google Scholar 

  35. Sobolev, A. V. & Chaussidon, M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet. Sci. Lett. 137, 45–55 (1996).

    Article  Google Scholar 

  36. Précigout, J., Prigent, C., Palasse, L. & Pochon, A. Water pumping in mantle shear zones. Nat. Commun. 8, 15736 (2017).

    Article  Google Scholar 

  37. Schmerr, N. The Gutenberg discontinuity: Melt at the lithosphere-asthenosphere boundary. Science 335, 1480–1483 (2012).

    Article  Google Scholar 

  38. Takei, Y. & Holtzman, B. K. Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J. Geophys. Res. Solid Earth 114, B06205 (2009).

    Google Scholar 

  39. Murton, B. J. Anomalous oceanic lithosphere formed in a leaky transform fault: evidence from the Western Limassol Forest Complex, Cyprus. J. Geol. Soc. 143, 845–854 (1986).

    Article  Google Scholar 

  40. Machida, S. et al. Regional mantle heterogeneity regulates melt production along the Réunion hotspot-influenced Central Indian Ridge. Geochem. J. 48, 433–449 (2014).

    Article  Google Scholar 

  41. Vassallo, M., Eggenberger, K., van Manen, D. J., Özbek, A. & Watterson, P. Broadband and beyond with marine towed streamers. Leading Edge 32, 1356–1365 (2013).

    Article  Google Scholar 

  42. Bekara, M. & Van der Baan, M. Random and coherent noise attenuation by empirical mode decomposition. Geophysics 74, V89–V98 (2009).

    Article  Google Scholar 

  43. Qin, Y. & Singh, S. C. Seismic evidence of a two-layer lithospheric deformation in the Indian Ocean. Nat. Commun. 6, 8298 (2015).

    Article  Google Scholar 

  44. Abers, G. A. & Hacker, B. R. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochem. Geophys. Geosyst. 17, 616 (2016).

    Article  Google Scholar 

  45. Clark, A. N., Lesher, C. E., Jacobsen, S. D. & Wang, Y. Anomalous density and elastic properties of basalt at high pressure: Reevaluating of the effect of melt fraction on seismic velocity in the Earth’s crust and upper mantle. J. Geophys. Res. Solid Earth 121, 4232–4248 (2016).

    Article  Google Scholar 

  46. Dasgupta, R. et al. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493, 211 (2013).

    Article  Google Scholar 

  47. McCarthy, C. & Takei, Y. Anelasticity and viscosity of partially molten rock analogue: Toward seismic detection of small quantities of melt. Geophys. Res. Lett. 38, L18306 (2011).

    Article  Google Scholar 

  48. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Advance Grant agreement no. 339442_TransAtlanticILAB. The discussions with C. Langmuir on petrology were extremely useful. This manuscript was substantially improved in response to the thoughtful suggestions of B. Romanowicz and C. Langmuir. T. Stern provided a very constructive review. This is an Intitut de Physique du Globe de Paris contribution number 3899.

Author information

Authors and Affiliations

Authors

Contributions

S.C.S. designed the project, led the data acquisition, supervised F.M. and wrote the paper. F.M. processed the seismic data, carried out all the calculations, produced the figures and participated in the writing of the paper.

Corresponding author

Correspondence to Satish C. Singh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehouachi, F., Singh, S.C. Water-rich sublithospheric melt channel in the equatorial Atlantic Ocean. Nature Geosci 11, 65–69 (2018). https://doi.org/10.1038/s41561-017-0034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-017-0034-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing