Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation


Satellite observations over the past two decades have revealed increasing loss of grounded ice in West Antarctica, associated with floating ice shelves that have been thinning. Thinning reduces an ice shelf’s ability to restrain grounded-ice discharge, yet our understanding of the climate processes that drive mass changes is limited. Here, we use ice-shelf height data from four satellite altimeter missions (1994–2017) to show a direct link between ice-shelf height variability in the Antarctic Pacific sector and changes in regional atmospheric circulation driven by the El Niño/Southern Oscillation. This link is strongest from the Dotson to Ross ice shelves and weaker elsewhere. During intense El Niño years, height increase by accumulation exceeds the height decrease by basal melting, but net ice-shelf mass declines as basal ice loss exceeds ice gain by lower-density snow. Our results demonstrate a substantial response of Amundsen Sea ice shelves to global and regional climate variability, with rates of change in height and mass on interannual timescales that can be comparable to the longer-term trend, and with mass changes from surface accumulation offsetting a significant fraction of the changes in basal melting. This implies that ice-shelf height and mass variability will increase as interannual atmospheric variability increases in a warming climate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Relationship between ice-shelf height anomalies and ENSO index.
Fig. 2: Spatial pattern of correlation between wind and ice-shelf height anomalies.
Fig. 3: Average oceanic, atmospheric and ice-shelf conditions during two distinct ENSO phases (El Niño, 1997–1998; and La Niña, 1999–2000).
Fig. 4: Oceanic and atmospheric contributions to ice-shelf height anomalies between El Niño (1997–1998) and La Niña (1999–2000).
Fig. 5: Relative influence of ENSO along the Antarctic Pacific margin.

Change history

  • 03 July 2018

    In the version of this Article originally published, the word ‘from’ was incorrectly spelt as ‘form’ in Fig. 4b–d. In addition, the coloured scale bar was incorrectly labelled with a range of –1.5 to –1.5; this should have been –1.5 to +1.5. These errors have now been corrected in the online versions.

  • 20 January 2018

    In the version of this Article originally published, there was a spelling mistake in Figure 3 where ‘La Niña’ was incorrectly spelled ‘La Niño’. This has been corrected in all versions of the Article.


  1. 1.

    Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1177 (IPCC, Cambridge Univ. Press, 2013).

  2. 2.

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    Article  Google Scholar 

  3. 3.

    Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A. & LeBrocq, A. M. Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324, 901–903 (2009).

    Article  Google Scholar 

  4. 4.

    Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).

    Article  Google Scholar 

  5. 5.

    Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    Article  Google Scholar 

  6. 6.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  7. 7.

    Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

    Article  Google Scholar 

  8. 8.

    Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article  Google Scholar 

  9. 9.

    Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

    Article  Google Scholar 

  10. 10.

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  Google Scholar 

  11. 11.

    Jacobs, S. S., Jenkins, A., Giulivi, C. F. & Dutrieux, P. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci. 4, 1–5 (2011).

    Article  Google Scholar 

  12. 12.

    Thoma, M., Jenkins, A., Holland, D. & Jacobs, S. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett. 35, L18602 (2008).

    Article  Google Scholar 

  13. 13.

    Steig, E. J., Ding, Q., Battisti, D. S. & Jenkins, A. Tropical forcing of Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Ann. Glaciol. 53, 19–28 (2012).

    Article  Google Scholar 

  14. 14.

    Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    Article  Google Scholar 

  15. 15.

    Jacobs, S. et al. Getz Ice Shelf melting response to changes in ocean forcing. J. Geophys. Res. Oceans 118, 4152–4168 (2013).

    Article  Google Scholar 

  16. 16.

    Turner, J. The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol. 24, 1–31 (2004).

    Article  Google Scholar 

  17. 17.

    Raphael, M. N. et al. The Amundsen Sea Low: Variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111–121 (2016).

    Article  Google Scholar 

  18. 18.

    Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. & Phillips, T. The influence of the Amundsen–Bellingshausen Seas Low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26, 6633–6648 (2013).

    Article  Google Scholar 

  19. 19.

    Turner, J. et al. Atmosphere-ocean-ice interactions in the Amundsen Sea Embayment, West Antarctica. Rev. Geophys. 55, G000532 (2017).

    Article  Google Scholar 

  20. 20.

    Philander, S. G. El Nino, La Nina, and the Southern Oscillation (Academic Press, San Diego, 1989).

  21. 21.

    Schneider, D. P., Okumura, Y. & Deser, C. Observed Antarctic interannual climate variability and tropical linkages. J. Clim. 25, 4048–4066 (2012).

    Article  Google Scholar 

  22. 22.

    Sasgen, I., Dobslaw, H., Martinec, Z. & Thomas, M. Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Planet. Sci. Lett. 299, 352–358 (2010).

    Article  Google Scholar 

  23. 23.

    Genthon, C. & Cosme, E. Intermittent signature of ENSO in west-Antarctic precipitation. Geophys. Res. Lett. 30, 2081 (2003).

    Article  Google Scholar 

  24. 24.

    Medley, B. et al. Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophys. Res. Lett. 40, 3649–3654 (2013).

    Article  Google Scholar 

  25. 25.

    Steig, E. J. et al. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nat. Geosci. 6, 372–375 (2013).

    Article  Google Scholar 

  26. 26.

    Yuan, X. ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct. Sci. 16, 415–425 (2004).

    Article  Google Scholar 

  27. 27.

    Raphael, M. N. & Hobbs, W. The influence of the large-scale atmospheric circulation on Antarctic sea ice during ice advance and retreat seasons. Geophys. Res. Lett. 41, L060365 (2014).

    Article  Google Scholar 

  28. 28.

    Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    Article  Google Scholar 

  29. 29.

    Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change 4, 564–569 (2014).

    Article  Google Scholar 

  30. 30.

    Fogt, R. L., Jones, J. M. & Renwick, J. Seasonal zonal asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J. Clim. 25, 6253–6270 (2012).

    Article  Google Scholar 

  31. 31.

    Fogt, R. L., Bromwich, D. H. & Hines, K. M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 36, 1555–1576 (2011).

    Article  Google Scholar 

  32. 32.

    Clem, K. R. & Fogt, R. L. Varying roles of ENSO and SAM on the Antarctic Peninsula climate in austral spring. J. Geophys. Res. Atmos. 118, 11481–11492 (2013).

    Article  Google Scholar 

  33. 33.

    Paolo, F. S., Fricker, H. A. & Padman, L. Constructing improved decadal records of Antarctic ice shelf height change from multiple satellite radar altimeters. Remote Sens. Environ. 177, 192–205 (2016).

    Article  Google Scholar 

  34. 34.

    Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).

    Article  Google Scholar 

  35. 35.

    Politis, D. N. & Romano, J. P. The stationary bootstrap. J. Am. Stat. Assoc. 89, 1303–1313 (1994).

    Article  Google Scholar 

  36. 36.

    Mudelsee, M. Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math. Geol. 35, 651–665 (2003).

    Article  Google Scholar 

  37. 37.

    Huang, B. et al. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2014).

    Article  Google Scholar 

  38. 38.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Royal Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  39. 39.

    Padman, L., King, M., Goring, D., Corr, H. & Coleman, R. Ice-shelf elevation changes due to atmospheric pressure variations. J. Glaciol. 49, 521–526 (2003).

    Article  Google Scholar 

  40. 40.

    Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E. & Kuipers Munneke, P. A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett. 39, L04501 (2012).

    Article  Google Scholar 

  41. 41.

    Van Wessem, J. M. et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol. 60, 761–770 (2014).

    Article  Google Scholar 

  42. 42.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    Article  Google Scholar 

  43. 43.

    Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

    Article  Google Scholar 

  44. 44.

    Ghil, M. et al. Advanced spectral methods for climatic time series. Rev. Geophys. 40, 3–41 (2002).

    Article  Google Scholar 

  45. 45.

    Vautard, R., Yiou, P. & Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D 58, 95–126 (1992).

    Article  Google Scholar 

  46. 46.

    Allen, M. R. & Smith, L. A. Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. J. Clim. 9, 3373–3404 (1996).

    Article  Google Scholar 

  47. 47.

    Raphael, M. N. A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett. 31, L23212 (2004).

    Article  Google Scholar 

  48. 48.

    Fogt, R. L. Sidebar 6.1: El Niño and Antarctica. In State of the Climate in 2015 (eds Blunden, J. & Arndt, D. S.) Vol. 97, 162 (Bulletin of the American Meteorological Society, Boston, 2016).

  49. 49.

    Frieler, K. et al. Consistent evidence of increasing Antarctic accumulation with warming. Nat. Clim. Change 5, 348–352 (2015).

    Article  Google Scholar 

  50. 50.

    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  Google Scholar 

  51. 51.

    Siegfried, M. R., Fricker, H. A., Roberts, M., Scambos, T. A. & Tulaczyk, S. A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry. Geophys. Res. Lett. 41, 891–898 (2014).

    Article  Google Scholar 

  52. 52.

    McMillan, M. et al. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 41, L060111 (2014).

    Google Scholar 

  53. 53.

    Chuter, S. J. & Bamber, J. L. Antarctic ice shelf thickness from CryoSat-2 radar altimetry. Geophys. Res. Lett. 42, L066515 (2015).

    Article  Google Scholar 

  54. 54.

    Maslanik, J. & Stroeve, J. Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, 1999).

    Google Scholar 

  55. 55.

    Cavalieri, D. J., Gloersen, P. & Campbell, W. J. Determination of sea ice parameters with the NIMBUS 7 SMMR. J. Geophys. Res. Atmosph. 89, 5355–5369 (1984).

    Article  Google Scholar 

  56. 56.

    Liu, W. et al. Extended Reconstructed Sea Surface Temperature Version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Clim. 28, 931–951 (2014).

    Article  Google Scholar 

  57. 57.

    Hosking, J. S., Orr, A., Bracegirdle, T. J. & Turner, J. Future circulation changes off West Antarctica: Sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett. 43, L067143 (2016).

    Article  Google Scholar 

  58. 58.

    Ligtenberg, S. R. M., Helsen, M. M. & Van Den Broeke, M. R. An improved semi-empirical model for the densification of Antarctic firn. Cryosphere 5, 809–819 (2011).

    Article  Google Scholar 

  59. 59.

    Mudelsee, M. TAUEST: A Computer Program for Estimating Persistence in Unevenly Spaced Weather/Climate Time Series. Comput. Geosci. 28, 69–72 (2002).

    Article  Google Scholar 

  60. 60.

    Golyandina, N. & Zhigljavsky, A. Singular Spectrum Analysis for Time Series (Springer, Berlin, 2013).

  61. 61.

    Elsner, J. B. & Tsonis, A. A. Singular Spectrum Analysis: A New Tool in Time Series Analysis (Springer, Berlin, 1996).

  62. 62.

    Groth, A., Ghil, M., Hallegatte, S. & Dumas, P. The role of oscillatory modes in US business cycles. J. Bus. Cycle Meas. Anal. 2015, 63–81 (2015).

    Article  Google Scholar 

  63. 63.

    Wåhlin, A. K., Yuan, X., Björk, G. & Nohr, C. Inflow of warm Circumpolar Deep Water in the Central Amundsen Shelf. J. Phys. Oceanogr. 40, 1427–1434 (2010).

    Article  Google Scholar 

  64. 64.

    Moholdt, G., Padman, L. & Fricker, H. A. Basal mass budget of Ross and Filchner-Ronne ice shelves, Antarctica, derived from Lagrangian analysis of ICESat altimetry. J. Geophys. Res. Earth Surf. 119, 2014JF003171 (2014).

    Article  Google Scholar 

  65. 65.

    Mouginot, J., Rignot, E. & Scheuchl, B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).

    Article  Google Scholar 

  66. 66.

    Sutterley, T. C. et al. Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques. Geophys. Res. Lett. 41, 2014GL061940 (2014).

    Article  Google Scholar 

  67. 67.

    Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci. 1, 106–110 (2008).

    Article  Google Scholar 

  68. 68.

    van de Berg, W. J., van den Broeke, M. R., Reijmer, C. H. & van Meijgaard, E. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res. Atmospheres 111, D11104 (2006).

    Article  Google Scholar 

  69. 69.

    Bracegirdle, T. J. & Marshall, G. J. The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Clim. 25, 7138–7146 (2012).

    Article  Google Scholar 

Download references


This work was funded by NASA (awards NNX12AN50H 002 (93735A), NNX10AG19G and NNX13AP60G). This is ESR contribution 159. We thank J. Zwally’s Ice Altimetry group at the NASA Goddard Space Flight Center for distributing their data sets for ERS-1/2 and Envisat satellite radar-altimeter missions (, and the European Space Agency (ESA) for distributing their CryoSat-2 data. We thank S. Ligtenberg, M. van Wessem and M. van den Broeke for providing the surface mass balance and firn densification model-derived products.

Author information




F.S.P. and L.P. devised the study. F.S.P. processed the data and performed the analyses. F.S.P., L.P. and H.A.F. wrote the manuscript. S.A. and M.R.S. provided the CryoSat-2 time series. S.H. processed the ERA-Interim and sea-ice products. All authors discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to F. S. Paolo.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paolo, F.S., Padman, L., Fricker, H.A. et al. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nature Geosci 11, 121–126 (2018).

Download citation

Further reading