Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effects of primitive photosynthesis on Earth’s early climate system

Abstract

The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth’s oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth’s early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth’s methane (CH4) cycle, and would thus have represented a critical component of Earth’s early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth’s early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic diagram of the primitive biosphere considered in this study.
Fig. 2: The biogeochemical response to changes in the outgassing flux of reduced gases.
Fig. 3: Monte Carlo simulations showing the probability density for warm (≥288 K) climate states with a low CH4/CO2 (≤0.2).

References

  1. 1.

    Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    Article  Google Scholar 

  2. 2.

    Newman, M. J. & Rood, R. T. Implications of solar evolution for the Earth’s early atmosphere. Science 198, 1035–1037 (1977).

    Article  Google Scholar 

  3. 3.

    Bahcall, N. J., Pinsonneault, M. H. & Basu, S. Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990–1012 (2001).

    Article  Google Scholar 

  4. 4.

    Sagan, C. & Mullen, G. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).

    Article  Google Scholar 

  5. 5.

    Sagan, C. & Chyba, C. The early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217–1221 (1997).

    Article  Google Scholar 

  6. 6.

    Wolf, E. T. & Toon, O. B. Fractal organic hazes provided an ultraviolet shield for early Earth. Science 328, 1266–1268 (2010).

    Article  Google Scholar 

  7. 7.

    Owen, T., Cess, R. D. & Ramanathan, V. Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277, 640–642 (1979).

    Article  Google Scholar 

  8. 8.

    Kuhn, W. R. & Kasting, J. F. Effects of increased CO2 concentrations on surface temperature of the early Earth. Nature 301, 53–55 (1983).

    Article  Google Scholar 

  9. 9.

    von Paris, P. et al. Warming the early earth—CO2 reconsidered. Planet. Space Sci. 56, 1244–1259 (2008).

    Article  Google Scholar 

  10. 10.

    Kanzaki, Y. & Murakami, T. Estimates of atmospheric CO2 in the Neoarchean–Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 159, 190–219 (2015).

    Article  Google Scholar 

  11. 11.

    Kiehl, J. T. & Dickinson, R. E. A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early Earth surface temperatures. J. Geophys. Res. 92, 2991–2998 (1987).

    Article  Google Scholar 

  12. 12.

    Pavlov, A. A., Brown, L. L. & Kasting, J. F. UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res. 106, 23267–23287 (2001).

    Article  Google Scholar 

  13. 13.

    Catling, D. C., Claire, M. W. & Zahnle, K. J. Anaerobic methanotrophy and the rise of atmospheric oxygen. Phil. Trans. R. Soc. A 365, 1867–1888 (2007).

    Article  Google Scholar 

  14. 14.

    Catling, D. C., Zahnle, K. J. & McKay, C. P. What caused the second rise of O2 in the late Proterozoic? Methane, sulfate, and irreversible oxidation. Astrobiology 2, 569 (2002).

    Google Scholar 

  15. 15.

    Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).

    Article  Google Scholar 

  16. 16.

    Buick, R. Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology 5, 97–100 (2007).

    Article  Google Scholar 

  17. 17.

    Roberson, A. L., Roadt, J., Halevy, I. & Kasting, J. F. Greenhouse warming by nitrous oxide and methane in the Proterozoic eon. Geobiology 9, 313–320 (2011).

    Article  Google Scholar 

  18. 18.

    Ueno, Y. et al. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox. Proc. Natl Acad. Sci. USA 106, 14784–14789 (2009).

    Article  Google Scholar 

  19. 19.

    Goldblatt, C. et al. Nitrogen-enhanced greenhouse warming on early Earth. Nat. Geosci. 2, 891–896 (2009).

    Article  Google Scholar 

  20. 20.

    Wordsworth, R. & Pierrehumbert, R. Hydrogen-nitrogen greenhouse warming in Earth’s early atmosphere. Science 339, 64–67 (2013).

    Article  Google Scholar 

  21. 21.

    Sagan, C. Reducing greenhouses and the temperature history of Earth and Mars. Nature 269, 224–226 (1977).

    Article  Google Scholar 

  22. 22.

    Catling, D. C. & Kasting, J. F. Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge Univ. Press, Cambridge, 2017).

    Google Scholar 

  23. 23.

    Olson, S. L., Reinhard, C. T. & Lyons, T. W. Limited role for methane in the mid-Proterozoic greenhouse. Proc. Natl Acad. Sci. USA 113, 11447–11452 (2016).

    Article  Google Scholar 

  24. 24.

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  Google Scholar 

  25. 25.

    Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis (eds Houghton J. T. et al.) (Cambridge Univ. Press, New York, 2001).

  26. 26.

    Des Marais, D. J. When did photosynthesis emerge on Earth? Science 289, 1703–1705 (2000).

    Google Scholar 

  27. 27.

    Canfield, D. E. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Article  Google Scholar 

  28. 28.

    Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Phil. Trans. R. Soc. B 361, 1819–1836 (2006).

    Article  Google Scholar 

  29. 29.

    Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).

    Article  Google Scholar 

  30. 30.

    Walker, J. C. G. Evolution of the Atmosphere. (Macmillan, New York, 1977).

    Google Scholar 

  31. 31.

    Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).

    Article  Google Scholar 

  32. 32.

    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

    Article  Google Scholar 

  33. 33.

    Fiebig, J., Woodland, A. B., D’Alessandro, W. & Püttmann, W. Excess methane in continental hydrothermal emissions is abiogenic. Geology 37, 495–498 (2009).

    Article  Google Scholar 

  34. 34.

    Driese, S. G. et al. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res. 189, 1–17 (2011).

    Article  Google Scholar 

  35. 35.

    Kasting, J. F. What caused the rise of atmospheric O2? Chem. Geol. 362, 13–25 (2013).

    Article  Google Scholar 

  36. 36.

    Arney, G. et al. The pale orange dot: the spectrum and habitability of hazy Archean Earth. Astrobiology 16, 873–899 (2016).

    Article  Google Scholar 

  37. 37.

    McKay, C., Pollack, J. & Courtin, R. The greenhouse and antigreenhouse effects on Titan. Science 253, 1118–1121 (1991).

    Article  Google Scholar 

  38. 38.

    McKay, C. P., Lorenz, R. D. & Lunine, J. I. Analytic solutions for the antigreenhouse effect: Titan and the early Earth. Icarus 137, 56–61 (1999).

    Article  Google Scholar 

  39. 39.

    Trainer, M. G. et al. Haze aerosols in the atmosphere of early Earth: Manna from heaven. Astrobiology 4, 409–419 (2004).

    Article  Google Scholar 

  40. 40.

    Trainer, M. G. et al. Organic haze on Titan and the early Earth. Proc. Natl Acad. Sci. USA 103, 18035–18042 (2006).

    Article  Google Scholar 

  41. 41.

    Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., Farquhar, J. & Poulton, S. W. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5, 359–363 (2012).

    Article  Google Scholar 

  42. 42.

    Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).

    Article  Google Scholar 

  43. 43.

    Kump, L. R. & Seyfried, W. E. Jr Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235, 654–662 (2005).

    Article  Google Scholar 

  44. 44.

    Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  Google Scholar 

  45. 45.

    Lowell, R. P. & Keller, S. M. High-temperature seafloor hydrothermal circulation over geologic time and archean banded iron formations. Geophys. Res. Lett. 30, 1391 (2003).

    Article  Google Scholar 

  46. 46.

    Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  47. 47.

    Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10, 135–139 (2017).

    Article  Google Scholar 

  48. 48.

    Konhauser, K. O., Newman, D. K. & Kappler, A. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3, 167–177 (2005).

    Article  Google Scholar 

  49. 49.

    Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    Article  Google Scholar 

  50. 50.

    Konhauser, K. O. et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet. Sci. Lett. 258, 87–100 (2007).

    Article  Google Scholar 

  51. 51.

    Wallmann, K. et al. The global inventory of methane hydrate in marine sediments: a theoretical approach. Energies 5, 2449 (2012).

    Article  Google Scholar 

  52. 52.

    Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013).

    Article  Google Scholar 

  53. 53.

    Arthur, M. A. et al. Varve calibrated records of carbonate and organic carbon accumulation over the last 2000 years in the Black Sea. Global Biogeochem. Cycles 8, 195–217 (1994).

    Article  Google Scholar 

  54. 54.

    Betts, J. N. & Holland, H. D. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 5–18 (1991).

    Article  Google Scholar 

  55. 55.

    Kuntz, L. B., Laakso, T. A., Schrag, D. P. & Crowe, S. A. Modeling the carbon cycle in Lake Matano. Geobiology 13, 454–461 (2015).

    Article  Google Scholar 

  56. 56.

    Rye, R., Kuo, P. H. & Holland, H. D. Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378, 603–605 (1995).

    Article  Google Scholar 

  57. 57.

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. B 361, 931–950 (2006).

    Article  Google Scholar 

  58. 58.

    Sleep, N. H. & Bird, D. K. Niches of the pre-photosynthetic biosphere and geologic preservation of Earth’s earliest ecology. Geobiology 5, 101–117 (2007).

    Article  Google Scholar 

  59. 59.

    Lollar, B. S., Onstott, T. C., Lacrampe-Couloume, G. & Ballentine, C. J. The contribution of the Precambrian continental lithosphere to global H2 production. Nature 516, 379–382 (2014).

    Article  Google Scholar 

  60. 60.

    Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans. (Princeton Univ. Press, Princeton, 1984).

    Google Scholar 

Download references

Acknowledgements

We are grateful to J. Kasting for constructive comments on an early draft of this manuscript and his sharing of the FORTRAN code. This work was supported by JSPS KAKENHI grant numbers JP16K05618 and JP25120006. K.O. acknowledges support from the NASA Postdoctoral Program at the NASA Astrobiology Program, administered by Universities Space Research Association under contact with NASA. P.K.H. acknowledges support from TeNO/Tokyo-dome. C.T.R. acknowledges support from the NASA Astrobiology Institute and the Alfred P. Sloan Foundation.

Author information

Affiliations

Authors

Contributions

K.O. and E.T. developed the hypothesis. K.O., E.T. and C.T.R. designed the study. K.O. constructed the quantitative framework and performed experiments with the sGRB model. P.K.H. and Y.N. carried out the experiments with the coupled model. K.O., P.K.H., Y.N. and C.T.R. analysed the results. K.O., E.T. and C.T.R. wrote the paper with input from P.K.H. All authors discussed and contributed intellectually to the interpretation of the results.

Corresponding author

Correspondence to Kazumi Ozaki.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary material

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozaki, K., Tajika, E., Hong, P.K. et al. Effects of primitive photosynthesis on Earth’s early climate system. Nature Geosci 11, 55–59 (2018). https://doi.org/10.1038/s41561-017-0031-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing