Article | Published:

Effects of primitive photosynthesis on Earth’s early climate system

Nature Geosciencevolume 11pages5559 (2018) | Download Citation


The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth’s oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth’s early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth’s methane (CH4) cycle, and would thus have represented a critical component of Earth’s early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth’s early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

  2. 2.

    Newman, M. J. & Rood, R. T. Implications of solar evolution for the Earth’s early atmosphere. Science 198, 1035–1037 (1977).

  3. 3.

    Bahcall, N. J., Pinsonneault, M. H. & Basu, S. Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990–1012 (2001).

  4. 4.

    Sagan, C. & Mullen, G. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).

  5. 5.

    Sagan, C. & Chyba, C. The early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217–1221 (1997).

  6. 6.

    Wolf, E. T. & Toon, O. B. Fractal organic hazes provided an ultraviolet shield for early Earth. Science 328, 1266–1268 (2010).

  7. 7.

    Owen, T., Cess, R. D. & Ramanathan, V. Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277, 640–642 (1979).

  8. 8.

    Kuhn, W. R. & Kasting, J. F. Effects of increased CO2 concentrations on surface temperature of the early Earth. Nature 301, 53–55 (1983).

  9. 9.

    von Paris, P. et al. Warming the early earth—CO2 reconsidered. Planet. Space Sci. 56, 1244–1259 (2008).

  10. 10.

    Kanzaki, Y. & Murakami, T. Estimates of atmospheric CO2 in the Neoarchean–Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 159, 190–219 (2015).

  11. 11.

    Kiehl, J. T. & Dickinson, R. E. A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early Earth surface temperatures. J. Geophys. Res. 92, 2991–2998 (1987).

  12. 12.

    Pavlov, A. A., Brown, L. L. & Kasting, J. F. UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res. 106, 23267–23287 (2001).

  13. 13.

    Catling, D. C., Claire, M. W. & Zahnle, K. J. Anaerobic methanotrophy and the rise of atmospheric oxygen. Phil. Trans. R. Soc. A 365, 1867–1888 (2007).

  14. 14.

    Catling, D. C., Zahnle, K. J. & McKay, C. P. What caused the second rise of O2 in the late Proterozoic? Methane, sulfate, and irreversible oxidation. Astrobiology 2, 569 (2002).

  15. 15.

    Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).

  16. 16.

    Buick, R. Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology 5, 97–100 (2007).

  17. 17.

    Roberson, A. L., Roadt, J., Halevy, I. & Kasting, J. F. Greenhouse warming by nitrous oxide and methane in the Proterozoic eon. Geobiology 9, 313–320 (2011).

  18. 18.

    Ueno, Y. et al. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox. Proc. Natl Acad. Sci. USA 106, 14784–14789 (2009).

  19. 19.

    Goldblatt, C. et al. Nitrogen-enhanced greenhouse warming on early Earth. Nat. Geosci. 2, 891–896 (2009).

  20. 20.

    Wordsworth, R. & Pierrehumbert, R. Hydrogen-nitrogen greenhouse warming in Earth’s early atmosphere. Science 339, 64–67 (2013).

  21. 21.

    Sagan, C. Reducing greenhouses and the temperature history of Earth and Mars. Nature 269, 224–226 (1977).

  22. 22.

    Catling, D. C. & Kasting, J. F. Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge Univ. Press, Cambridge, 2017).

  23. 23.

    Olson, S. L., Reinhard, C. T. & Lyons, T. W. Limited role for methane in the mid-Proterozoic greenhouse. Proc. Natl Acad. Sci. USA 113, 11447–11452 (2016).

  24. 24.

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

  25. 25.

    Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis (eds Houghton J. T. et al.) (Cambridge Univ. Press, New York, 2001).

  26. 26.

    Des Marais, D. J. When did photosynthesis emerge on Earth? Science 289, 1703–1705 (2000).

  27. 27.

    Canfield, D. E. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

  28. 28.

    Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Phil. Trans. R. Soc. B 361, 1819–1836 (2006).

  29. 29.

    Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).

  30. 30.

    Walker, J. C. G. Evolution of the Atmosphere. (Macmillan, New York, 1977).

  31. 31.

    Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).

  32. 32.

    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

  33. 33.

    Fiebig, J., Woodland, A. B., D’Alessandro, W. & Püttmann, W. Excess methane in continental hydrothermal emissions is abiogenic. Geology 37, 495–498 (2009).

  34. 34.

    Driese, S. G. et al. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res. 189, 1–17 (2011).

  35. 35.

    Kasting, J. F. What caused the rise of atmospheric O2? Chem. Geol. 362, 13–25 (2013).

  36. 36.

    Arney, G. et al. The pale orange dot: the spectrum and habitability of hazy Archean Earth. Astrobiology 16, 873–899 (2016).

  37. 37.

    McKay, C., Pollack, J. & Courtin, R. The greenhouse and antigreenhouse effects on Titan. Science 253, 1118–1121 (1991).

  38. 38.

    McKay, C. P., Lorenz, R. D. & Lunine, J. I. Analytic solutions for the antigreenhouse effect: Titan and the early Earth. Icarus 137, 56–61 (1999).

  39. 39.

    Trainer, M. G. et al. Haze aerosols in the atmosphere of early Earth: Manna from heaven. Astrobiology 4, 409–419 (2004).

  40. 40.

    Trainer, M. G. et al. Organic haze on Titan and the early Earth. Proc. Natl Acad. Sci. USA 103, 18035–18042 (2006).

  41. 41.

    Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., Farquhar, J. & Poulton, S. W. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5, 359–363 (2012).

  42. 42.

    Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).

  43. 43.

    Kump, L. R. & Seyfried, W. E. Jr Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235, 654–662 (2005).

  44. 44.

    Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

  45. 45.

    Lowell, R. P. & Keller, S. M. High-temperature seafloor hydrothermal circulation over geologic time and archean banded iron formations. Geophys. Res. Lett. 30, 1391 (2003).

  46. 46.

    Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

  47. 47.

    Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10, 135–139 (2017).

  48. 48.

    Konhauser, K. O., Newman, D. K. & Kappler, A. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3, 167–177 (2005).

  49. 49.

    Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

  50. 50.

    Konhauser, K. O. et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet. Sci. Lett. 258, 87–100 (2007).

  51. 51.

    Wallmann, K. et al. The global inventory of methane hydrate in marine sediments: a theoretical approach. Energies 5, 2449 (2012).

  52. 52.

    Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013).

  53. 53.

    Arthur, M. A. et al. Varve calibrated records of carbonate and organic carbon accumulation over the last 2000 years in the Black Sea. Global Biogeochem. Cycles 8, 195–217 (1994).

  54. 54.

    Betts, J. N. & Holland, H. D. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 5–18 (1991).

  55. 55.

    Kuntz, L. B., Laakso, T. A., Schrag, D. P. & Crowe, S. A. Modeling the carbon cycle in Lake Matano. Geobiology 13, 454–461 (2015).

  56. 56.

    Rye, R., Kuo, P. H. & Holland, H. D. Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378, 603–605 (1995).

  57. 57.

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. B 361, 931–950 (2006).

  58. 58.

    Sleep, N. H. & Bird, D. K. Niches of the pre-photosynthetic biosphere and geologic preservation of Earth’s earliest ecology. Geobiology 5, 101–117 (2007).

  59. 59.

    Lollar, B. S., Onstott, T. C., Lacrampe-Couloume, G. & Ballentine, C. J. The contribution of the Precambrian continental lithosphere to global H2 production. Nature 516, 379–382 (2014).

  60. 60.

    Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans. (Princeton Univ. Press, Princeton, 1984).

Download references


We are grateful to J. Kasting for constructive comments on an early draft of this manuscript and his sharing of the FORTRAN code. This work was supported by JSPS KAKENHI grant numbers JP16K05618 and JP25120006. K.O. acknowledges support from the NASA Postdoctoral Program at the NASA Astrobiology Program, administered by Universities Space Research Association under contact with NASA. P.K.H. acknowledges support from TeNO/Tokyo-dome. C.T.R. acknowledges support from the NASA Astrobiology Institute and the Alfred P. Sloan Foundation.

Author information


  1. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA

    • Kazumi Ozaki
    •  & Christopher T. Reinhard
  2. NASA Astrobiology Institute, Alternative Earths Team, Mountain View, CA, USA

    • Kazumi Ozaki
    •  & Christopher T. Reinhard
  3. NASA Postdoctoral Program, Universities Space Research Association, Columbia, MD, USA

    • Kazumi Ozaki
  4. Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

    • Eiichi Tajika
  5. Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

    • Peng K. Hong
  6. Analysis Engineering Department, Hitachi Power Solutions Co., Ltd., Hitachi-Shi, Ibaraki, Japan

    • Yusuke Nakagawa


  1. Search for Kazumi Ozaki in:

  2. Search for Eiichi Tajika in:

  3. Search for Peng K. Hong in:

  4. Search for Yusuke Nakagawa in:

  5. Search for Christopher T. Reinhard in:


K.O. and E.T. developed the hypothesis. K.O., E.T. and C.T.R. designed the study. K.O. constructed the quantitative framework and performed experiments with the sGRB model. P.K.H. and Y.N. carried out the experiments with the coupled model. K.O., P.K.H., Y.N. and C.T.R. analysed the results. K.O., E.T. and C.T.R. wrote the paper with input from P.K.H. All authors discussed and contributed intellectually to the interpretation of the results.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Kazumi Ozaki.

Supplementary information

  1. Supplementary material

    Supplementary Information

About this article

Publication history





Further reading