Southward shift of the global wind energy resource under high carbon dioxide emissions

Abstract

The use of wind energy resource is an integral part of many nations’ strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today’s climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land–sea thermal gradients account for the tropical and southern subtropical increases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Isolating the impacts of GCM approximations.
Fig. 2: Simulated wind power climatology.
Fig. 3: Predicted changes in wind power.
Fig. 4: Evolution of regional wind power over the twenty-first century.
Fig. 5: Hemispheric-scale drivers of regional wind power changes.

References

  1. 1.

    Global Wind Report—Annual Market Update 2014 (Global Wind Energy Council, 2015).

  2. 2.

    Synthesis Report, Aggregate Effect of the Intended Nationally Determined Contributions: An Update (United Nations Framework Convention on Climate Change, 2016).

  3. 3.

    Bodini, N., Lundquist, J. K., Zardi, D. & Handschy, M. Year-to-year correlation, record length, and overconfidence in wind resource assessment. Wind Energy Sci. 1, 115–128 (2016).

    Article  Google Scholar 

  4. 4.

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F.) Ch. 2 (IPCC, Cambridge Univ. Press, Cambridge, 2013).

  5. 5.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F.) Ch. 12 (IPCC, Cambridge Univ. Press, Cambridge, 2013).

  6. 6.

    Klink, K. Climatological mean and interannual variance of United States surface wind speed, direction and velocity. Int. J. Climatol. 19, 471–488 (1999).

    Article  Google Scholar 

  7. 7.

    Klink, K. Trends in mean monthly maximum and minimum surface wind speeds in the coterminous United States, 1961 to 1990. Clim. Res. 13, 193–205 (1999).

    Article  Google Scholar 

  8. 8.

    Klink, K. Trends and interannual variability of wind speed distributions in Minnesota. J. Clim. 15, 3311–3317 (2002).

    Article  Google Scholar 

  9. 9.

    Enloe, J., O’Brien, J. J. & Smith, S. R. ENSO impacts on peak wind gusts in the United States. J. Clim. 17, 1728–1737 (2004).

    Article  Google Scholar 

  10. 10.

    Harper, B. R., Katz, R. W. & Harriss, R. C. Statistical methods for quantifying the effect of the El Niño–Southern Oscillation on wind power in the Northern Great Plains of the United States. Wind Eng. 31, 123–137 (2007).

    Article  Google Scholar 

  11. 11.

    St. George, S. & Wolfe, S. A. El Niño stills winter winds across the southern Canadian Prairies. Geophys. Res. Lett. 36, L23806 (2009).

    Article  Google Scholar 

  12. 12.

    Pryor, S. C. et al. Wind speed trends over the contiguous United States. J. Geophys. Res. Atmos. 114, D14105 (2009).

    Article  Google Scholar 

  13. 13.

    Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J.-N. & Ciais, P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 3, 756–761 (2010).

    Article  Google Scholar 

  14. 14.

    Clifton, A. & Lundquist, J. K. Data clustering reveals climate impacts on local wind phenomena. J. Appl. Meteorol. Climatol. 51, 1547–1557 (2012).

    Article  Google Scholar 

  15. 15.

    Li, X., Zhong, S., Bian, X. & Heilman, W. E. Climate and climate variability of the wind power resources in the Great Lakes region of the United States. J. Geophys. Res. Atmos. 115, D18107 (2010).

    Article  Google Scholar 

  16. 16.

    Berg, N., Hall, A., Capps, S. B. & Hughes, M. El Niño-Southern Oscillation impacts on winter winds over Southern California. Clim. Dyn. 40, 109–121 (2012).

    Article  Google Scholar 

  17. 17.

    Bett, P. E., Thornton, H. E. & Clark, R. T. Using the Twentieth Century Reanalysis to assess climate variability for the European wind industry. Theor. Appl. Climatol. 127, 61–80 (2017).

    Article  Google Scholar 

  18. 18.

    Breslow, P. B. & Sailor, D. J. Vulnerability of wind power resources to climate change in the continental United States. Renew. Energy 27, 585–598 (2002).

    Article  Google Scholar 

  19. 19.

    Sailor, D. J., Smith, M. & Hart, M. Climate change implications for wind power resources in the Northwest United States. Renew. Energy 33, 2393–2406 (2008).

    Article  Google Scholar 

  20. 20.

    Reyers, M., Moemken, J. & Pinto, J. G. Future changes of wind energy potentials over Europe in a large CMIP5 multi-model ensemble. Int. J. Climatol. 36, 783–796 (2016).

    Article  Google Scholar 

  21. 21.

    Ren, D. Effects of global warming on wind energy availability. J. Renew. Sustain. Energy 2, 052301 (2010).

    Article  Google Scholar 

  22. 22.

    Kulkarni, S., Deo, M. C. & Ghosh, S. Evaluation of wind extremes and wind potential under changing climate for Indian offshore using ensemble of 10 GCMs. Ocean Coast. Manag. 121, 141–152 (2016).

    Article  Google Scholar 

  23. 23.

    Kumar, D., Mishra, V. & Ganguly, A. R. Evaluating wind extremes in CMIP5 climate models. Clim. Dyn. 45, 441–453 (2014).

    Article  Google Scholar 

  24. 24.

    Pryor, S. C. & Schoof, J. T. Importance of the SRES in projections of climate change impacts on near-surface wind regimes. Meteorol. Z. 19, 267–274 (2010).

    Article  Google Scholar 

  25. 25.

    Pryor, S. C. & Barthelmie, R. J. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc. Natl Acad. Sci. USA 108, 8167–8171 (2011).

    Article  Google Scholar 

  26. 26.

    Hueging, H., Haas, R., Born, K., Jacob, D. & Pinto, J. G. Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J. Appl. Meteorol. Climatol. 52, 903–917 (2012).

    Article  Google Scholar 

  27. 27.

    Gonçalves-Ageitos, M., Barrera-Escoda, A., Baldasano, J. M. & Cunillera, J. Modelling wind resources in climate change scenarios in complex terrains. Renew. Energy 76, 670–678 (2015).

    Article  Google Scholar 

  28. 28.

    Johnson, D. L. & Erhardt, R. J. Projected impacts of climate change on wind energy density in the United States. Renew. Energy 85, 66–73 (2016).

    Article  Google Scholar 

  29. 29.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  30. 30.

    Jager, D. & Andreas, A. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data) (National Renewable Energy Laboratory, 1996).

  31. 31.

    Kalnay, E. et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  32. 32.

    Banta, R. M., Olivier, L. D., Neff, W. D., Levinson, D. H. & Ruffieux, D. Influence of canyon-induced flows on flow and dispersion over adjacent plains. Theor. Appl. Climatol. 52, 27–42 (1995).

    Article  Google Scholar 

  33. 33.

    Aitken, M. L., Banta, R. M., Pichugina, Y. L. & Lundquist, J. K. Quantifying wind turbine wake characteristics from scanning remote sensor data. J. Atmos. Ocean. Technol. 31, 765–787 (2014).

    Article  Google Scholar 

  34. 34.

    Wagner, R., Courtney, M., Gottschall, J. & Lindelöw-Marsden, P. Accounting for the speed shear in wind turbine power performance measurement: accounting for speed shear in power performance measurement. Wind Energy 14, 993–1004 (2011).

    Article  Google Scholar 

  35. 35.

    Walter, K., Weiss, C. C., Swift, A. H. P., Chapman, J. & Kelley, N. D. Speed and direction shear in the stable nocturnal boundary layer. J. Sol. Energy Eng. 131, 011013 (2009).

    Article  Google Scholar 

  36. 36.

    Vanderwende, B. J. & Lundquist, J. K. The modification of wind turbine performance by statistically distinct atmospheric regimes. Environ. Res. Lett. 7, 034035 (2012).

    Article  Google Scholar 

  37. 37.

    Archer, C. L. & Jacobson, M. Z. Evaluation of global wind power. J. Geophys. Res. 110, D12110 (2005).

  38. 38.

    Lu, X., McElroy, M. B. & Kiviluoma, J. Global potential for wind-generated electricity. Proc. Natl Acad. Sci. USA 106, 10933–10938 (2009).

    Article  Google Scholar 

  39. 39.

    Chang, E. K. M., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming: CMIP5 model-projected storm track change. J. Geophys. Res. Atmos. 117, D23118 (2012).

  40. 40.

    Harvey, B. J., Shaffrey, L. C., Woollings, T. J., Zappa, G. & Hodges, K. I. How large are projected 21st century storm track changes?: Storm track variability and change. Geophys. Res. Lett. 39, L18707 (2012).

  41. 41.

    Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G. & Stephenson, D. B. A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Clim. 26, 5846–5862 (2013).

    Article  Google Scholar 

  42. 42.

    Harvey, B. J., Shaffrey, L. C. & Woollings, T. J. Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim. Dyn. 43, 1171–1182 (2014).

    Article  Google Scholar 

  43. 43.

    Mbengue, C. & Schneider, T. Storm track shifts under climate change: what can be learned from large-scale dry dynamics. J. Clim. 26, 9923–9930 (2013).

    Article  Google Scholar 

  44. 44.

    Fitch, A. C. et al. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Weather Rev. 140, 3017–3038 (2012).

    Article  Google Scholar 

  45. 45.

    Fitch, A. C., Lundquist, J. K. & Olson, J. B. Mesoscale influences of wind farms throughout a diurnal cycle. Mon. Weather Rev. 141, 2173–2198 (2013).

    Article  Google Scholar 

  46. 46.

    Fitch, A. C., Olson, J. B. & Lundquist, J. K. Parameterization of wind farms in climate models. J. Clim. 26, 6439–6458 (2013).

    Article  Google Scholar 

  47. 47.

    Vautard, R. et al. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms. Nat. Commun. 5, 3196 (2014).

    Article  Google Scholar 

  48. 48.

    Fitch, A. C. Climate impacts of large-scale wind farms as parameterized in a global climate model. J. Clim. 28, 6160–6180 (2015).

    Article  Google Scholar 

  49. 49.

    Tobin, I. et al. Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Clim. Change 128, 99–112 (2014).

    Article  Google Scholar 

  50. 50.

    Wallace, J. M. & Hobbs, P. V. Atmospheric Science: An Introductory Survey (Academic, 2006).

  51. 51.

    IEC 61400-12-1. Wind Turbines - Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines (International Electrotechnical Commission, 2005).

Download references

Acknowledgements

We acknowledge the WCRP Working Group on Coupled Modelling and US DOE/PCMDI for CMIP, and thank the climate modelling groups (listed in Supplementary Table 1) for producing and making available their model output. We also acknowledge the WHOI CMIP5 Community Storage Server, Woods Hole Oceanographic Institution, Woods Hole, MA, USA (cmip5.whoi.edu). We express appreciation to the US DOE’s National Renewable Energy Laboratory for sustained observations from the M2 meteorological tower, and to NOAA/OAR/ESRL/PSD in Boulder, CO, USA for archiving NCEP/NCAR Reanalysis fields.

Author information

Affiliations

Authors

Contributions

K.B.K. and J.K.L. conceived the research; J.K.L. provided algorithms for calculating variables related to wind energy; K.B.K. analysed the tower, reanalysis and climate model data; L.Z. assisted with the diagnostic analyses; all authors contributed to the final interpretation and writing of the manuscript with major contributions by K.B.K. and J.K.L.

Corresponding author

Correspondence to Kristopher B. Karnauskas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables and Figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karnauskas, K.B., Lundquist, J.K. & Zhang, L. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nature Geosci 11, 38–43 (2018). https://doi.org/10.1038/s41561-017-0029-9

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing