Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Geider, R. D. J. et al. Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob. Change Biol. 7, 849–882 (2001).

  2. 2.

    Hamm, C. E. et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421, 841–843 (2003).

  3. 3.

    Finkel, Z. V. et al. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc. Natl Acad. Sci. USA 102, 8927–8932 (2005).

  4. 4.

    Tréguer, P. J. & De La Rocha, C. L. The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477–501 (2013).

  5. 5.

    Litchman, E., Klausmeier, C. A., Schofield, O. M. & Falkowski, P. G. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 10, 1170–1181 (2007).

  6. 6.

    Edwards, K. F. et al. Light and growth in marine phytoplankton: allometric, taxonomic, and environmental variation. Limnol. Oceanogr. 60, 540–552 (2015).

  7. 7.

    Furnas, M. J. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plank. Res. 12, 1117–1151 (1990).

  8. 8.

    Smetacek, V. Diatoms and the ocean carbon cycle. Protists 150, 25–32 (1999).

  9. 9.

    Field, C. B. et al. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

  10. 10.

    Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2: Natural Variation Archean to Present (eds E. T. Sundquist, E. T. & Broecker, W. S.) (AGU Monograph 32, American Geophysical Union, Washington DC, 1985).

  11. 11.

    Jin, X. et al. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Glob. Biogeochem. Cycles 20, B002532 (2006).

  12. 12.

    Margalef, R. in Etude et Gestion du Système Narin (eds Elskens, I. Sanfeld, A. & Vigneron, J.) 58–88 (Université Libre de Bruxelles, Bruxelles, 1977).

  13. 13.

    Lévy, M., Jahn, O., Dutkiewicz, S. & Follows, M. J. Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence. Limnol. Oceanogr. Fluids Environ. 4, 67–84 (2014).

  14. 14.

    Lévy, M., Jahn, O., Dutkiewicz, S., Follows, M. J. & d’Ovidio, F. The dynamical landscape of marine phy The Carbon Cycle and Atmospheric toplankton diversity. J. R. Soc. Interface 12, (2015).

  15. 15.

    Kemp, A. E. S. & Villereal, T. A. High diatom production and export in stratified waters — a potential negative feedback to global warming. Prog. Oceanogr. 19, 4–23 (2013).

  16. 16.

    Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, 1516–1525 (2016).

  17. 17.

    Bracher, A. et al. Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 6, 751–764 (2009).

  18. 18.

    Alvain, S., Moulin, C., Dandonneau, Y. & Loisel, H. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob. Biogeochem. Cycles 22, B003154 (2008).

  19. 19.

    Leblanc, K. et al. A global diatom database — abundance, biovolume and biomass in the world ocean. Earth Syst. Sci. Data 4, 149–165 (2012).

  20. 20.

    Buitenhuis, E., Vogt, M. & Moriarty, R. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).

  21. 21.

    Gregg, W. W. & Casey, N. W. Modeling coccolithophores in the global oceans. Deep-Sea Res. II 54, 447–477 (2007).

  22. 22.

    Brzezinski, M. A. et al. The annual silica cycle of the north Pacific subtropical gyre. Deep-Sea Res. 58, 988–1001 (2011).

  23. 23.

    Foster, R. A. & Zehr, J. P. Characterization of diatom — cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ. Microbiol. 8, 1913–1925 (2006).

  24. 24.

    Cullen, J. J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Annu. Rev. Mar. Sci. 7, 207–2039 (2015).

  25. 25.

    Quéguiner, B. & Brzezinski, M. A. Biogenic silica production rates and particulate organic matter distribution in the Atlantic sector of the Southern Ocean during austral spring 1992. Deep-Sea Res. II 49, 1765–1786 (2002).

  26. 26.

    Nelson, D. M. & Tréguer, P. Role of silicon as a limiting nutrient to Antarctic diatoms: evidence from kinetics studies in the Ross Sea ice-edge zone. Mar. Ecol. Prog. Ser. 80, 255–264 (1992).

  27. 27.

    Dutkiewicz, S. et al. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. Biogeosciences 12, 4447–4481 (2015).

  28. 28.

    Aumont, O. et al. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).

  29. 29.

    Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).

  30. 30.

    Tang, E. P. Y. The allometry of algal growth rates. J. Plank. Res. 17, 1325–1335 (1995).

  31. 31.

    Irwin, A. J. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J. Plank. Res. 28, 459–471 (2006).

  32. 32.

    Ward, B. A., Dutkiewicz, S., Jahn, O. & Follows, M. J. A size structured food-web model for the global ocean. Limnol. Oceanogr. 57, 1877–1891 (2012).

  33. 33.

    Dutkiewicz, S., Follows, M. J. & Bragg, J. G. Modeling the coupling of ocean ecology and biogeochemistry. Glob. Biogeochem. Cycles 23, B003405 (2009).

  34. 34.

    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

  35. 35.

    Romero, O. E., Fischer, G., Karstensen, J. & Cermeño, P. Eddies as trigger for diatom productivity in the open-ocean Northeast Atlantic. Progress Oceanogr. 147, 38–48 (2016).

  36. 36.

    Peterson, T. D., Crawford, D. W. & Harrison, P. J. Evolution of the phytoplankton assemblage in a long-lived mesoscale eddy in the eastern Gulf of Alaska. Mar. Ecol. Prog. Ser. 424, 53–73 (2011).

  37. 37.

    Cetinić, I. et al. A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic bloom experiment. Biogeosciences 12, 2179–2194 (2015).

  38. 38.

    Clayton, S., Nagai, T. & Follows, M. J. Fine scale phytoplankton community structure across the Kuroshio Front. J. Plankton Res. 36, 1017–1030 (2014).

  39. 39.

    d’Ovidio, F. et al. Fluid dynamical niches of phytoplankton types. Proc. Natl Acad. Sci. USA 107, 18366–18370 (2010).

  40. 40.

    Klein, P. & Lapeyre, G. The oceanic vertical pump induced by mesoscale and submesoscale Turbulence. Annu. Rev. Mar. Sci. 1, 351–375 (2009).

  41. 41.

    de Baar, H. J. W. et al. Synthesis of the iron fertilization experiments: from the iron age to the age of enlightenment. J. Geophs. Res. 110, C09S16 (2005).

  42. 42.

    Nagasaki, K. Dinoflagellates, diatoms, and their viruses. J. Microbiol. 46, 235–243 (2008).

  43. 43.

    Smetacek, V. S., Assmy, P. & Henjes, J. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct. Sci. 16, 541–558 (2004).

  44. 44.

    Irwin, A. J., Nelles, A. M. & Finkel, Z. V. Phytoplankton niches estimated from field data. Limnol. Oceanogr. 57, 787–797 (2012).

  45. 45.

    Brun, P. et al. Ecological niches of open ocean phytoplankton taxa. Limnol. Oceanogr. 60, 1020–1038 (2015).

  46. 46.

    Assmy, P. et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic circumpolar current. Proc. Natl Acad. Sci. USA 110, 20633–20638 (2013).

  47. 47.

    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285 (1987).

  48. 48.

    Lam, P. J. & Bishop, J. K. B. High biomass, low export regimes in the Southern Ocean. Deep-Sea Res. II 54, 601–638 (2007).

  49. 49.

    Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S. & Wakeham, S. G. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II 49, 219–236 (2002).

  50. 50.

    Guidi, L. et al. Effects of phytoplankton community on production, size and export of large aggregates: a world-ocean analysis. Limnol. Oceanogr. 54, 1951–1963 (2009).

  51. 51.

    Legendre, L. & Lefèvre, J. Microbial food webs and the export of biogenic carbon in oceans. Aquat. Microb. Ecol. 9, 69–77 (1995).

  52. 52.

    Martin, J. H. Glacial–interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).

  53. 53.

    Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).

  54. 54.

    Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).

  55. 55.

    Marchetti, A. & Cassar, N. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications. Geobiology 7, 419–431 (2009).

  56. 56.

    Durkin, C. A. et al. Frustule-related gene transcription and the influence of diatom community composition on silica precipitation in an iron-limited environment. Limnol. Oceanogr. 57, 1619–1633 (2012).

  57. 57.

    Durkin, C. A. et al. Silicic acid supplied to coastal diatom communities influences cellular silicification and the potential export of carbon. Limnol. Oceanogr. 58, 1707–1726 (2013).

  58. 58.

    Quéguiner, B. Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean. Deep-Sea Res. II 90, 43–54 (2013).

  59. 59.

    Abelmann, A. et al. Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean. Paleoceanography 21, 1–9 (2006).

  60. 60.

    Alldredge, A. L. & Jackson, G. A. Aggregation in marine systems — preface. Deep-Sea Res. II 42, 1–7 (1995).

  61. 61.

    Mari, X. et al. Transparent expolymer particles: effects on carbon cycling in the ocean. Prog. Oceanogr. 151, 13–17 (2017).

  62. 62.

    Crawford, R. M. The role of sex in the sedimentation of a marine diatom bloom. Limnol. Oceanogr. 40, 200–204 (1995).

  63. 63.

    Rembauville, M. et al. Export fluxes in a naturally iron-fertilized area of the Southern Ocean — Part 1: seasonal dynamics of particulate organic carbon export from a moored sediment trap. Biogeosciences 12, 3153–3170 (2015).

  64. 64.

    Nagasaki, K. Dinoflagellates, diatoms, and their viruses. J. Microbiol. 46, 235–243 (2008).

  65. 65.

    Sherr, E. B. & Sherr, B. F. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 352, 187–197 (2007).

  66. 66.

    Turner, J. F. Review: zooplankton, fecal pellets, marine snow, phytodetritus, and the ocean’s biological pump. Progr. Oceanogr. 130, 205–248 (2015).

  67. 67.

    Smetacek, V. S., Assmy, P. & Henjes, J. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct. Sci. 16, 541–558 (2004).

  68. 68.

    Sarthou, G. et al. Growth physiology and fate of diatoms in the ocean: a review. J. Sea Res. 53, 25–42 (2005).

  69. 69.

    Villareal, T. A. et al. Summer blooms of diatom-diazotroph assemblages and surface chlorophyll in the North Pacific gyre: a disconnect. J. Geophys. Res. 116, C006268 (2011).

  70. 70.

    Pondaven, P. et al. Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158, 21–28 (2007).

  71. 71.

    Bergkvist, J. et al. Grazer-induced chain length plasticity reduces grazing risk in a marine diatom. Limnol. Oceanogr. 57, 318–324 (2012).

  72. 72.

    Vincent, F. Diatom Interactions in the Open-Ocean: From the Global Patterns to the Single Cell (Paris Descartes, Paris, 2015).

  73. 73.

    Siegel, D. A. et al. Prediction of the export and fate of global ocean net primary production: the EXPORTS science plan. Front. Mar. Sci. 3, 22 (2016).

  74. 74.

    Seiter, K., Hensen, C., Schröter, J. & Zabela, M. Organic carbon content in surface sediments-defining regional provinces. Deep-Sea Res. 51, 2001–2026 (2004).

  75. 75.

    Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean Glob. Biogeochem. Cycles 26, GB1028 (2012).

  76. 76.

    Honjo, S. et al. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Progr. Oceanogr. 76, 217–285 (2008).

  77. 77.

    Alvain, S. et al. Rapid climatic driven shifts of diatoms at high latitudes. Remote Sens. Environ. 132, 195–201 (2013).

  78. 78.

    Weber, T. et al. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).

  79. 79.

    Riaux-Gobin, C. et al. Surficial deep-sea sediments across the polar frontal system (Southern Ocean, Indian sector): Particulate carbon content and microphyte signatures. Mar. Geol. 230, 147–159 (2006).

  80. 80.

    Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012).

  81. 81.

    Salter, I. et al. Diatom resting spore ecology drives enhanced carbon export from a naturally iron-fertilized bloom in the Southern Ocean. Glob. Biogeochem. Cycles 26, B003977 (2012).

  82. 82.

    Witt, U. et al. In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 23, 763–766 (2003).

  83. 83.

    Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 7608 (2015).

  84. 84.

    Karl, D. M. et al. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. Proc. Natl Acad. Sci. USA 109, 1842–1849 (2012).

  85. 85.

    Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).

  86. 86.

    Yoder, J. A., Ackleson, S. G., Barber, R. T., Flament, P. & Balch, W. M. A line in the sea. Nature 371, 689–692 (1994).

  87. 87.

    Cermeño, P. The geological story of marine diatoms and the last generation of fossil fuels. Perspect. Phycol. 3, 53–60 (2016).

  88. 88.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

  89. 89.

    Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).

  90. 90.

    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).

  91. 91.

    Dutkiewicz, S., Ward, B. A., Scott, J. R. & Follows, M. J. Understanding predicted shifts in diazotroph biogeography using resource competition theory. Biogeosciences 11, 5445–5461 (2014).

  92. 92.

    Fu, W., Renderson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).

  93. 93.

    Mackey, K. R. M., Morris, J. J., Morel, F. M. M. & Kranz, S. A. Response of photosynthesis to ocean acidification. Oceanography 28, 74–91 (2015).

  94. 94.

    Dutkiewicz, S. et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Change 5, 1002–1006 (2015).

  95. 95.

    Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J. & Finkel, Z. V. Ocean acidification enhances the growth rate of larger diatoms. Limnol. Oceanogr. 59, 1027–1034 (2014).

  96. 96.

    Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Glob. Change Biol. 22, 2633–2650 (2016).

  97. 97.

    Hutchins, D. A. & Boyd, P. W. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Change 6, 1072–1076 (2016).

  98. 98.

    Irwin, A. J., Finkel, Z. V., Müller-Karger, F. & Troccoli Ghinaglia, L. Phytoplankton adapt to changing ocean environments. Proc. Natl Acad. Sci. USA 112, 5762–66 (2015).

  99. 99.

    Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).

  100. 100.

    Laufkötter, C. et al. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences 13, 4027–4047 (2016).

  101. 101.

    Tirichine, L., Rastogi, A. & Bowler, C. Recent progress in diatom genomics and epigenomics. Curr. Opin. Plant Biol. 36, 46–55 (2017).

  102. 102.

    Vardi, A., Thamatrakoln, K., Bidle, K. D. & Falkowski, P. G. Diatom genomes come of age. Genome Biol. 9, 245 (2008).

  103. 103.

    Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 304, 79–86 (2004).

  104. 104.

    Allen, A. E. et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473, 203–207 (2011).

  105. 105.

    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates ferric ion uptake. Curr. Biol. 25, 364–371 (2015).

  106. 106.

    Bailleul, B. et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524, 366–369 (2015).

  107. 107.

    Bowler, C., Karl, D. M. & Colwell, R. R. Microbial oceanography in a sea of opportunity. Nature 459, 180–184 (2009).

  108. 108.

    Amato, A. et al. Marine diatoms change their gene expression profile when exposed to microscale turbulence under nutrient replete conditions. Sci. Rep. https://doi.org/10.1038/s41598-017-03741–6 (2017).

  109. 109.

    Peers, G. & Price, N. M. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol. Oceanogr. 50, 1149–1158 (2005).

  110. 110.

    Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).

  111. 111.

    Veluchamy, A. et al. Insights into the role of DNA methylation in diatoms by genome wide profiling in Phaeodactylum tricornutum. Nat. Commun. 4, 2091 (2013).

  112. 112.

    Tirichine, L. & Bowler, C. Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J. 66, 45–57 (2011).

  113. 113.

    Mock, T. et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541, 536–540 (2017).

  114. 114.

    Sauterey, B., Ward, B. A., Follows, M. J., Bowler, C. & Claessen, D. When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems. J. Plankton Res. 37, 28–47 (2015).

  115. 115.

    Sauterey, B., Ward, B., Rault, J., Bowler, C. & Claessen, D. The implications of eco-evolutionary processes for the emergence of marine plankton community biogeography. Am. Nat. 190, 116–130 (2017).

  116. 116.

    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

  117. 117.

    Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).

  118. 118.

    Alexander, H. et al. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc. Natl Acad. Sci. USA 112, E5972–E5979 (2015).

  119. 119.

    Le Quéré, C. et al. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 11, 2016–2040 (2005).

  120. 120.

    Follows, M. J. et al. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

  121. 121.

    Mutshinda, C. M. et al. Environmental control of the dominant phytoplankton in the Cariaco basin: a hierarchical Bayesian approach. Mar. Biol. Res. 9, 246–260 (2013).

  122. 122.

    Loeuille, N. & Loreau, M. Evolutionary emergence of size-structured food webs. Proc. Natl Acad. Sci. USA 102, 5761–5766 (2005).

Download references


The authors thank Sébastien Hervé (IUEM) for his artwork. This study was supported by the SILICAMICS project funded by the Euromarine Consortium, the LABEX-Mer (French Government ‘Investissement d’Avenir’ programme, ANR-10-LABX-19-01) and the Région de Bretagne. S.D. and O.J. acknowledge funding from National Science Foundation (grant OCE-1434007, OCE-1259388, OCE-1048897) and the National Aeronautics and Space Administration (NNX16AR47G). C.B. acknowledges funding from the ERC Advanced Award ‘Diatomite’, the Louis D. Foundation, the Gordon and Betty Moore Foundation and the French Government ‘Investissements d’Avenir’ programmes MEMO LIFE (ANR-10-LABX-54), PSL Research University (ANR-1253 11-IDEX-0001-02) and OCEANOMICS (ANR-11-BTBR-0008). C.B. also thanks the Radcliffe Institute of Advanced Study at Harvard University for a scholar’s fellowship during the 2016–2017 academic year. B.M. acknowledges funding from the Agence Nationale de la Recherche ‘BIOPSIS’ grant. This article is contribution number 65 of Tara Oceans.

Author information


  1. Marine Environmental Sciences Laboratory (LEMAR, UMR 6539) at the European Institute for Marine Studies, Université de Bretagne Occidentale, CNRS, Plouzané, France

    • Paul Tréguer
    • , Brivaela Moriceau
    •  & Philippe Pondaven
  2. Institut de biologie de l’Ecole normale supérieure, Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France

    • Chris Bowler
  3. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Stephanie Dutkiewicz
    •  & Oliver Jahn
  4. Laboratoire des Sciences du Climat et de l’Environnement, Institut Pierre Simon Laplace, CEA-CNRS-UVSQ, Orme des Merisiers, Gif-sur-Yvette, Paris, France

    • Marion Gehlen
  5. Sorbonne Universités (UPMC Univ Paris 06)/CNRS/IRD/MNHN, Laboratoire d’Océanographie et du Climat, Institut Pierre Simon Laplace, Paris, France

    • Olivier Aumont
    •  & Marina Levy
  6. Sorbonne Universités, UPMC Univ Paris 06, Univ Antilles Guyane, Univ Nice Sophia Antipolis, CNRS, Evolution Paris Seine, Institut de Biologie Paris Seine, Paris, France

    • Lucie Bittner
  7. Romberg Tiburon Center, San Francisco State University, Tiburon, CA, 94920, USA

    • Richard Dugdale
  8. Environmental Science Program, Mount Allison University, Sackville, NB, Canada

    • Zoe Finkel
  9. Stazione Zoologica Anton Dohrn, Naples, Italy

    • Daniele Iudicone
  10. Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d’océanographie de Villefranche, Observatoire Océanologique, Villefranche-sur-Mer, France

    • Lionel Guidi
  11. Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO, UM110, Marseille, France

    • Marine Lasbleiz
    •  & Karine Leblanc


  1. Search for Paul Tréguer in:

  2. Search for Chris Bowler in:

  3. Search for Brivaela Moriceau in:

  4. Search for Stephanie Dutkiewicz in:

  5. Search for Marion Gehlen in:

  6. Search for Olivier Aumont in:

  7. Search for Lucie Bittner in:

  8. Search for Richard Dugdale in:

  9. Search for Zoe Finkel in:

  10. Search for Daniele Iudicone in:

  11. Search for Oliver Jahn in:

  12. Search for Lionel Guidi in:

  13. Search for Marine Lasbleiz in:

  14. Search for Karine Leblanc in:

  15. Search for Marina Levy in:

  16. Search for Philippe Pondaven in:


P.T. coordinated the manuscript and figures. P.T., C.B., B.M., S.D., M.G., K.L., O.A., L.B., R.D., Z.F., L.G., D.I., M.La., M.Le., & P.P. all contributed to writing the manuscript. P.T., B.M., S.D., K.L., L.B., O.J. & P.P. worked on the figures. All authors read and approved the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Paul Tréguer.

Supplementary information

  1. Supplementary Information

    Supplementary information and figures.

About this article

Publication history






Further reading