Influence of diatom diversity on the ocean biological carbon pump

Abstract

Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Diatom biogeography illustrated with the results of the MIT ecosystem model.
Fig. 2: Key processes influencing the contribution of diatoms to carbon export/transfer efficiency (CE/TE) potential.
Fig. 3: Diatom lineages and their role in net primary production (NPP) and carbon export (CE) as revealed by high-throughput DNA datasets.
Fig. 4: Schematic views on the role of diatoms in the biological carbon pump in the present and future ocean.

References

  1. 1.

    Geider, R. D. J. et al. Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob. Change Biol. 7, 849–882 (2001).

    Article  Google Scholar 

  2. 2.

    Hamm, C. E. et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421, 841–843 (2003).

    Article  Google Scholar 

  3. 3.

    Finkel, Z. V. et al. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc. Natl Acad. Sci. USA 102, 8927–8932 (2005).

    Article  Google Scholar 

  4. 4.

    Tréguer, P. J. & De La Rocha, C. L. The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477–501 (2013).

    Article  Google Scholar 

  5. 5.

    Litchman, E., Klausmeier, C. A., Schofield, O. M. & Falkowski, P. G. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 10, 1170–1181 (2007).

    Article  Google Scholar 

  6. 6.

    Edwards, K. F. et al. Light and growth in marine phytoplankton: allometric, taxonomic, and environmental variation. Limnol. Oceanogr. 60, 540–552 (2015).

    Article  Google Scholar 

  7. 7.

    Furnas, M. J. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plank. Res. 12, 1117–1151 (1990).

    Article  Google Scholar 

  8. 8.

    Smetacek, V. Diatoms and the ocean carbon cycle. Protists 150, 25–32 (1999).

    Article  Google Scholar 

  9. 9.

    Field, C. B. et al. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  Google Scholar 

  10. 10.

    Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2: Natural Variation Archean to Present (eds E. T. Sundquist, E. T. & Broecker, W. S.) (AGU Monograph 32, American Geophysical Union, Washington DC, 1985).

    Google Scholar 

  11. 11.

    Jin, X. et al. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Glob. Biogeochem. Cycles 20, B002532 (2006).

    Article  Google Scholar 

  12. 12.

    Margalef, R. in Etude et Gestion du Système Narin (eds Elskens, I. Sanfeld, A. & Vigneron, J.) 58–88 (Université Libre de Bruxelles, Bruxelles, 1977).

    Google Scholar 

  13. 13.

    Lévy, M., Jahn, O., Dutkiewicz, S. & Follows, M. J. Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence. Limnol. Oceanogr. Fluids Environ. 4, 67–84 (2014).

    Article  Google Scholar 

  14. 14.

    Lévy, M., Jahn, O., Dutkiewicz, S., Follows, M. J. & d’Ovidio, F. The dynamical landscape of marine phy The Carbon Cycle and Atmospheric toplankton diversity. J. R. Soc. Interface 12, (2015).

  15. 15.

    Kemp, A. E. S. & Villereal, T. A. High diatom production and export in stratified waters — a potential negative feedback to global warming. Prog. Oceanogr. 19, 4–23 (2013).

    Article  Google Scholar 

  16. 16.

    Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, 1516–1525 (2016).

    Article  Google Scholar 

  17. 17.

    Bracher, A. et al. Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 6, 751–764 (2009).

    Article  Google Scholar 

  18. 18.

    Alvain, S., Moulin, C., Dandonneau, Y. & Loisel, H. Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob. Biogeochem. Cycles 22, B003154 (2008).

    Article  Google Scholar 

  19. 19.

    Leblanc, K. et al. A global diatom database — abundance, biovolume and biomass in the world ocean. Earth Syst. Sci. Data 4, 149–165 (2012).

    Article  Google Scholar 

  20. 20.

    Buitenhuis, E., Vogt, M. & Moriarty, R. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).

    Article  Google Scholar 

  21. 21.

    Gregg, W. W. & Casey, N. W. Modeling coccolithophores in the global oceans. Deep-Sea Res. II 54, 447–477 (2007).

    Article  Google Scholar 

  22. 22.

    Brzezinski, M. A. et al. The annual silica cycle of the north Pacific subtropical gyre. Deep-Sea Res. 58, 988–1001 (2011).

    Article  Google Scholar 

  23. 23.

    Foster, R. A. & Zehr, J. P. Characterization of diatom — cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ. Microbiol. 8, 1913–1925 (2006).

    Article  Google Scholar 

  24. 24.

    Cullen, J. J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Annu. Rev. Mar. Sci. 7, 207–2039 (2015).

    Article  Google Scholar 

  25. 25.

    Quéguiner, B. & Brzezinski, M. A. Biogenic silica production rates and particulate organic matter distribution in the Atlantic sector of the Southern Ocean during austral spring 1992. Deep-Sea Res. II 49, 1765–1786 (2002).

    Article  Google Scholar 

  26. 26.

    Nelson, D. M. & Tréguer, P. Role of silicon as a limiting nutrient to Antarctic diatoms: evidence from kinetics studies in the Ross Sea ice-edge zone. Mar. Ecol. Prog. Ser. 80, 255–264 (1992).

    Article  Google Scholar 

  27. 27.

    Dutkiewicz, S. et al. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. Biogeosciences 12, 4447–4481 (2015).

    Article  Google Scholar 

  28. 28.

    Aumont, O. et al. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).

    Article  Google Scholar 

  29. 29.

    Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).

    Article  Google Scholar 

  30. 30.

    Tang, E. P. Y. The allometry of algal growth rates. J. Plank. Res. 17, 1325–1335 (1995).

    Article  Google Scholar 

  31. 31.

    Irwin, A. J. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J. Plank. Res. 28, 459–471 (2006).

    Article  Google Scholar 

  32. 32.

    Ward, B. A., Dutkiewicz, S., Jahn, O. & Follows, M. J. A size structured food-web model for the global ocean. Limnol. Oceanogr. 57, 1877–1891 (2012).

    Article  Google Scholar 

  33. 33.

    Dutkiewicz, S., Follows, M. J. & Bragg, J. G. Modeling the coupling of ocean ecology and biogeochemistry. Glob. Biogeochem. Cycles 23, B003405 (2009).

    Article  Google Scholar 

  34. 34.

    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    Article  Google Scholar 

  35. 35.

    Romero, O. E., Fischer, G., Karstensen, J. & Cermeño, P. Eddies as trigger for diatom productivity in the open-ocean Northeast Atlantic. Progress Oceanogr. 147, 38–48 (2016).

    Article  Google Scholar 

  36. 36.

    Peterson, T. D., Crawford, D. W. & Harrison, P. J. Evolution of the phytoplankton assemblage in a long-lived mesoscale eddy in the eastern Gulf of Alaska. Mar. Ecol. Prog. Ser. 424, 53–73 (2011).

    Article  Google Scholar 

  37. 37.

    Cetinić, I. et al. A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic bloom experiment. Biogeosciences 12, 2179–2194 (2015).

    Article  Google Scholar 

  38. 38.

    Clayton, S., Nagai, T. & Follows, M. J. Fine scale phytoplankton community structure across the Kuroshio Front. J. Plankton Res. 36, 1017–1030 (2014).

    Article  Google Scholar 

  39. 39.

    d’Ovidio, F. et al. Fluid dynamical niches of phytoplankton types. Proc. Natl Acad. Sci. USA 107, 18366–18370 (2010).

    Article  Google Scholar 

  40. 40.

    Klein, P. & Lapeyre, G. The oceanic vertical pump induced by mesoscale and submesoscale Turbulence. Annu. Rev. Mar. Sci. 1, 351–375 (2009).

    Article  Google Scholar 

  41. 41.

    de Baar, H. J. W. et al. Synthesis of the iron fertilization experiments: from the iron age to the age of enlightenment. J. Geophs. Res. 110, C09S16 (2005).

    Google Scholar 

  42. 42.

    Nagasaki, K. Dinoflagellates, diatoms, and their viruses. J. Microbiol. 46, 235–243 (2008).

    Article  Google Scholar 

  43. 43.

    Smetacek, V. S., Assmy, P. & Henjes, J. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct. Sci. 16, 541–558 (2004).

    Article  Google Scholar 

  44. 44.

    Irwin, A. J., Nelles, A. M. & Finkel, Z. V. Phytoplankton niches estimated from field data. Limnol. Oceanogr. 57, 787–797 (2012).

    Article  Google Scholar 

  45. 45.

    Brun, P. et al. Ecological niches of open ocean phytoplankton taxa. Limnol. Oceanogr. 60, 1020–1038 (2015).

    Article  Google Scholar 

  46. 46.

    Assmy, P. et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic circumpolar current. Proc. Natl Acad. Sci. USA 110, 20633–20638 (2013).

    Article  Google Scholar 

  47. 47.

    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285 (1987).

    Article  Google Scholar 

  48. 48.

    Lam, P. J. & Bishop, J. K. B. High biomass, low export regimes in the Southern Ocean. Deep-Sea Res. II 54, 601–638 (2007).

    Article  Google Scholar 

  49. 49.

    Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S. & Wakeham, S. G. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II 49, 219–236 (2002).

    Article  Google Scholar 

  50. 50.

    Guidi, L. et al. Effects of phytoplankton community on production, size and export of large aggregates: a world-ocean analysis. Limnol. Oceanogr. 54, 1951–1963 (2009).

    Article  Google Scholar 

  51. 51.

    Legendre, L. & Lefèvre, J. Microbial food webs and the export of biogenic carbon in oceans. Aquat. Microb. Ecol. 9, 69–77 (1995).

    Article  Google Scholar 

  52. 52.

    Martin, J. H. Glacial–interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).

    Article  Google Scholar 

  53. 53.

    Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).

    Article  Google Scholar 

  54. 54.

    Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).

    Article  Google Scholar 

  55. 55.

    Marchetti, A. & Cassar, N. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications. Geobiology 7, 419–431 (2009).

    Article  Google Scholar 

  56. 56.

    Durkin, C. A. et al. Frustule-related gene transcription and the influence of diatom community composition on silica precipitation in an iron-limited environment. Limnol. Oceanogr. 57, 1619–1633 (2012).

    Article  Google Scholar 

  57. 57.

    Durkin, C. A. et al. Silicic acid supplied to coastal diatom communities influences cellular silicification and the potential export of carbon. Limnol. Oceanogr. 58, 1707–1726 (2013).

    Article  Google Scholar 

  58. 58.

    Quéguiner, B. Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean. Deep-Sea Res. II 90, 43–54 (2013).

    Article  Google Scholar 

  59. 59.

    Abelmann, A. et al. Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean. Paleoceanography 21, 1–9 (2006).

    Article  Google Scholar 

  60. 60.

    Alldredge, A. L. & Jackson, G. A. Aggregation in marine systems — preface. Deep-Sea Res. II 42, 1–7 (1995).

    Article  Google Scholar 

  61. 61.

    Mari, X. et al. Transparent expolymer particles: effects on carbon cycling in the ocean. Prog. Oceanogr. 151, 13–17 (2017).

    Article  Google Scholar 

  62. 62.

    Crawford, R. M. The role of sex in the sedimentation of a marine diatom bloom. Limnol. Oceanogr. 40, 200–204 (1995).

    Article  Google Scholar 

  63. 63.

    Rembauville, M. et al. Export fluxes in a naturally iron-fertilized area of the Southern Ocean — Part 1: seasonal dynamics of particulate organic carbon export from a moored sediment trap. Biogeosciences 12, 3153–3170 (2015).

    Article  Google Scholar 

  64. 64.

    Nagasaki, K. Dinoflagellates, diatoms, and their viruses. J. Microbiol. 46, 235–243 (2008).

    Article  Google Scholar 

  65. 65.

    Sherr, E. B. & Sherr, B. F. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 352, 187–197 (2007).

    Article  Google Scholar 

  66. 66.

    Turner, J. F. Review: zooplankton, fecal pellets, marine snow, phytodetritus, and the ocean’s biological pump. Progr. Oceanogr. 130, 205–248 (2015).

    Article  Google Scholar 

  67. 67.

    Smetacek, V. S., Assmy, P. & Henjes, J. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct. Sci. 16, 541–558 (2004).

    Article  Google Scholar 

  68. 68.

    Sarthou, G. et al. Growth physiology and fate of diatoms in the ocean: a review. J. Sea Res. 53, 25–42 (2005).

    Article  Google Scholar 

  69. 69.

    Villareal, T. A. et al. Summer blooms of diatom-diazotroph assemblages and surface chlorophyll in the North Pacific gyre: a disconnect. J. Geophys. Res. 116, C006268 (2011).

    Article  Google Scholar 

  70. 70.

    Pondaven, P. et al. Grazing-induced changes in cell wall silicification in a marine diatom. Protist 158, 21–28 (2007).

    Article  Google Scholar 

  71. 71.

    Bergkvist, J. et al. Grazer-induced chain length plasticity reduces grazing risk in a marine diatom. Limnol. Oceanogr. 57, 318–324 (2012).

    Article  Google Scholar 

  72. 72.

    Vincent, F. Diatom Interactions in the Open-Ocean: From the Global Patterns to the Single Cell (Paris Descartes, Paris, 2015).

    Google Scholar 

  73. 73.

    Siegel, D. A. et al. Prediction of the export and fate of global ocean net primary production: the EXPORTS science plan. Front. Mar. Sci. 3, 22 (2016).

    Article  Google Scholar 

  74. 74.

    Seiter, K., Hensen, C., Schröter, J. & Zabela, M. Organic carbon content in surface sediments-defining regional provinces. Deep-Sea Res. 51, 2001–2026 (2004).

    Article  Google Scholar 

  75. 75.

    Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean Glob. Biogeochem. Cycles 26, GB1028 (2012).

    Article  Google Scholar 

  76. 76.

    Honjo, S. et al. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Progr. Oceanogr. 76, 217–285 (2008).

    Article  Google Scholar 

  77. 77.

    Alvain, S. et al. Rapid climatic driven shifts of diatoms at high latitudes. Remote Sens. Environ. 132, 195–201 (2013).

    Article  Google Scholar 

  78. 78.

    Weber, T. et al. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).

    Article  Google Scholar 

  79. 79.

    Riaux-Gobin, C. et al. Surficial deep-sea sediments across the polar frontal system (Southern Ocean, Indian sector): Particulate carbon content and microphyte signatures. Mar. Geol. 230, 147–159 (2006).

    Article  Google Scholar 

  80. 80.

    Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012).

    Article  Google Scholar 

  81. 81.

    Salter, I. et al. Diatom resting spore ecology drives enhanced carbon export from a naturally iron-fertilized bloom in the Southern Ocean. Glob. Biogeochem. Cycles 26, B003977 (2012).

    Article  Google Scholar 

  82. 82.

    Witt, U. et al. In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 23, 763–766 (2003).

    Article  Google Scholar 

  83. 83.

    Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 7608 (2015).

    Article  Google Scholar 

  84. 84.

    Karl, D. M. et al. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. Proc. Natl Acad. Sci. USA 109, 1842–1849 (2012).

    Article  Google Scholar 

  85. 85.

    Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).

    Article  Google Scholar 

  86. 86.

    Yoder, J. A., Ackleson, S. G., Barber, R. T., Flament, P. & Balch, W. M. A line in the sea. Nature 371, 689–692 (1994).

    Article  Google Scholar 

  87. 87.

    Cermeño, P. The geological story of marine diatoms and the last generation of fossil fuels. Perspect. Phycol. 3, 53–60 (2016).

    Article  Google Scholar 

  88. 88.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  89. 89.

    Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).

    Article  Google Scholar 

  90. 90.

    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).

    Article  Google Scholar 

  91. 91.

    Dutkiewicz, S., Ward, B. A., Scott, J. R. & Follows, M. J. Understanding predicted shifts in diazotroph biogeography using resource competition theory. Biogeosciences 11, 5445–5461 (2014).

    Article  Google Scholar 

  92. 92.

    Fu, W., Renderson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).

    Article  Google Scholar 

  93. 93.

    Mackey, K. R. M., Morris, J. J., Morel, F. M. M. & Kranz, S. A. Response of photosynthesis to ocean acidification. Oceanography 28, 74–91 (2015).

    Article  Google Scholar 

  94. 94.

    Dutkiewicz, S. et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Change 5, 1002–1006 (2015).

    Article  Google Scholar 

  95. 95.

    Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J. & Finkel, Z. V. Ocean acidification enhances the growth rate of larger diatoms. Limnol. Oceanogr. 59, 1027–1034 (2014).

    Article  Google Scholar 

  96. 96.

    Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Glob. Change Biol. 22, 2633–2650 (2016).

    Article  Google Scholar 

  97. 97.

    Hutchins, D. A. & Boyd, P. W. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Change 6, 1072–1076 (2016).

    Article  Google Scholar 

  98. 98.

    Irwin, A. J., Finkel, Z. V., Müller-Karger, F. & Troccoli Ghinaglia, L. Phytoplankton adapt to changing ocean environments. Proc. Natl Acad. Sci. USA 112, 5762–66 (2015).

    Article  Google Scholar 

  99. 99.

    Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).

    Article  Google Scholar 

  100. 100.

    Laufkötter, C. et al. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences 13, 4027–4047 (2016).

    Article  Google Scholar 

  101. 101.

    Tirichine, L., Rastogi, A. & Bowler, C. Recent progress in diatom genomics and epigenomics. Curr. Opin. Plant Biol. 36, 46–55 (2017).

    Article  Google Scholar 

  102. 102.

    Vardi, A., Thamatrakoln, K., Bidle, K. D. & Falkowski, P. G. Diatom genomes come of age. Genome Biol. 9, 245 (2008).

    Article  Google Scholar 

  103. 103.

    Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 304, 79–86 (2004).

    Article  Google Scholar 

  104. 104.

    Allen, A. E. et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473, 203–207 (2011).

    Article  Google Scholar 

  105. 105.

    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates ferric ion uptake. Curr. Biol. 25, 364–371 (2015).

    Article  Google Scholar 

  106. 106.

    Bailleul, B. et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524, 366–369 (2015).

    Article  Google Scholar 

  107. 107.

    Bowler, C., Karl, D. M. & Colwell, R. R. Microbial oceanography in a sea of opportunity. Nature 459, 180–184 (2009).

    Article  Google Scholar 

  108. 108.

    Amato, A. et al. Marine diatoms change their gene expression profile when exposed to microscale turbulence under nutrient replete conditions. Sci. Rep. https://doi.org/10.1038/s41598-017-03741–6 (2017).

    Google Scholar 

  109. 109.

    Peers, G. & Price, N. M. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol. Oceanogr. 50, 1149–1158 (2005).

    Article  Google Scholar 

  110. 110.

    Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).

    Article  Google Scholar 

  111. 111.

    Veluchamy, A. et al. Insights into the role of DNA methylation in diatoms by genome wide profiling in Phaeodactylum tricornutum. Nat. Commun. 4, 2091 (2013).

    Article  Google Scholar 

  112. 112.

    Tirichine, L. & Bowler, C. Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J. 66, 45–57 (2011).

    Article  Google Scholar 

  113. 113.

    Mock, T. et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541, 536–540 (2017).

    Article  Google Scholar 

  114. 114.

    Sauterey, B., Ward, B. A., Follows, M. J., Bowler, C. & Claessen, D. When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems. J. Plankton Res. 37, 28–47 (2015).

    Article  Google Scholar 

  115. 115.

    Sauterey, B., Ward, B., Rault, J., Bowler, C. & Claessen, D. The implications of eco-evolutionary processes for the emergence of marine plankton community biogeography. Am. Nat. 190, 116–130 (2017).

    Article  Google Scholar 

  116. 116.

    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    Article  Google Scholar 

  117. 117.

    Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).

    Article  Google Scholar 

  118. 118.

    Alexander, H. et al. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc. Natl Acad. Sci. USA 112, E5972–E5979 (2015).

    Article  Google Scholar 

  119. 119.

    Le Quéré, C. et al. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 11, 2016–2040 (2005).

    Google Scholar 

  120. 120.

    Follows, M. J. et al. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    Article  Google Scholar 

  121. 121.

    Mutshinda, C. M. et al. Environmental control of the dominant phytoplankton in the Cariaco basin: a hierarchical Bayesian approach. Mar. Biol. Res. 9, 246–260 (2013).

    Article  Google Scholar 

  122. 122.

    Loeuille, N. & Loreau, M. Evolutionary emergence of size-structured food webs. Proc. Natl Acad. Sci. USA 102, 5761–5766 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Sébastien Hervé (IUEM) for his artwork. This study was supported by the SILICAMICS project funded by the Euromarine Consortium, the LABEX-Mer (French Government ‘Investissement d’Avenir’ programme, ANR-10-LABX-19-01) and the Région de Bretagne. S.D. and O.J. acknowledge funding from National Science Foundation (grant OCE-1434007, OCE-1259388, OCE-1048897) and the National Aeronautics and Space Administration (NNX16AR47G). C.B. acknowledges funding from the ERC Advanced Award ‘Diatomite’, the Louis D. Foundation, the Gordon and Betty Moore Foundation and the French Government ‘Investissements d’Avenir’ programmes MEMO LIFE (ANR-10-LABX-54), PSL Research University (ANR-1253 11-IDEX-0001-02) and OCEANOMICS (ANR-11-BTBR-0008). C.B. also thanks the Radcliffe Institute of Advanced Study at Harvard University for a scholar’s fellowship during the 2016–2017 academic year. B.M. acknowledges funding from the Agence Nationale de la Recherche ‘BIOPSIS’ grant. This article is contribution number 65 of Tara Oceans.

Author information

Affiliations

Authors

Contributions

P.T. coordinated the manuscript and figures. P.T., C.B., B.M., S.D., M.G., K.L., O.A., L.B., R.D., Z.F., L.G., D.I., M.La., M.Le., & P.P. all contributed to writing the manuscript. P.T., B.M., S.D., K.L., L.B., O.J. & P.P. worked on the figures. All authors read and approved the manuscript.

Corresponding author

Correspondence to Paul Tréguer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tréguer, P., Bowler, C., Moriceau, B. et al. Influence of diatom diversity on the ocean biological carbon pump. Nature Geosci 11, 27–37 (2018). https://doi.org/10.1038/s41561-017-0028-x

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing