Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Substantial large-scale feedbacks between natural aerosols and climate


The terrestrial biosphere is an important source of natural aerosol. Natural aerosol sources alter climate, but are also strongly controlled by climate, leading to the potential for natural aerosol–climate feedbacks. Here we use a global aerosol model to make an assessment of terrestrial natural aerosol–climate feedbacks, constrained by observations of aerosol number. We find that warmer-than-average temperatures are associated with higher-than-average number concentrations of large (>100 nm diameter) particles, particularly during the summer. This relationship is well reproduced by the model and is driven by both meteorological variability and variability in natural aerosol from biogenic and landscape fire sources. We find that the calculated extratropical annual mean aerosol radiative effect (both direct and indirect) is negatively related to the observed global temperature anomaly, and is driven by a positive relationship between temperature and the emission of natural aerosol. The extratropical aerosol–climate feedback is estimated to be −0.14 W m−2 K−1 for landscape fire aerosol, greater than the −0.03 W m−2 K−1 estimated for biogenic secondary organic aerosol. These feedbacks are comparable in magnitude to other biogeochemical feedbacks, highlighting the need for natural aerosol feedbacks to be included in climate simulations.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The relationship between particle number anomaly and temperature anomaly.
Fig. 2: Interannual variability in aerosol radiative effects.
Fig. 3: The relationship between aerosol radiative effect anomaly and global temperature anomaly.
Fig. 4: Simulated natural aerosol feedback.


  1. 1.

    Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    Article  Google Scholar 

  2. 2.

    Carslaw, K. S. et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 10, 1701–1737 (2010).

    Article  Google Scholar 

  3. 3.

    Hallquist, M. et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9, 5155–5236 (2009).

    Article  Google Scholar 

  4. 4.

    Poschl, U. et al. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329, 1513–1516 (2010).

    Article  Google Scholar 

  5. 5.

    Martin, S. T. et al. Sources and properties of Amazonian aerosol particles. Rev. Geophys. 48, RG2002 (2010).

    Article  Google Scholar 

  6. 6.

    Martin, S. T. et al. Introduction: observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys. 16, 4785–4797 (2016).

    Article  Google Scholar 

  7. 7.

    Andreae, M. O. et al. The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos. Chem. Phys. 15, 10723–10776 (2015).

    Article  Google Scholar 

  8. 8.

    Goldstein, A. H., Koven, C. D., Heald, C. L. & Fung, I. Y. Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proc. Natl Acad. Sci. USA 106, 8835–8840 (2009).

    Article  Google Scholar 

  9. 9.

    Spracklen, D. V. et al. Wildfires drive interannual variability of organic carbon aerosol in the western US in summer. Geophys. Res. Lett. 34, L16816 (2007).

    Article  Google Scholar 

  10. 10.

    Tunved, P. et al. High natural aerosol loading over boreal forests. Science 312, 261–263 (2006).

    Article  Google Scholar 

  11. 11.

    Twomey, S. Aerosols, clouds and radiation. Atmospheric Environment 25, 2435–2442 (1991).

    Article  Google Scholar 

  12. 12.

    Rap, A. et al. Natural aerosol direct and indirect radiative effects. Geophys. Res. Lett. 40, 3297–3301 (2013).

    Article  Google Scholar 

  13. 13.

    Satheesh, S. K. & Moorthy, K. K. Radiative effects of natural aerosols: a review. Atmospheric Environment 39, 2089–2110 (2005).

    Article  Google Scholar 

  14. 14.

    Scott, C. E. et al. The direct and indirect radiative effects of biogenic secondary organic aerosol. Atmos. Chem. Phys. 14, 447–470 (2014).

    Article  Google Scholar 

  15. 15.

    Unger, N. Human land-use-driven reduction of forest volatiles cools global climate. Nat. Clim. Chang. 4, 907–910 (2014).

    Article  Google Scholar 

  16. 16.

    Spracklen, D. V. et al. Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. J. Geophys. Res. Atmos. 114, D20301 (2009).

    Article  Google Scholar 

  17. 17.

    Ward, D. S. et al. The changing radiative forcing of fires: global model estimates for past, present and future. Atmos. Chem. Phys. 12, 10857–10886 (2012).

    Article  Google Scholar 

  18. 18.

    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article  Google Scholar 

  19. 19.

    Heald, C. L. et al. Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J. Geophys. Res. Atmos. 113, D05211 (2008).

    Article  Google Scholar 

  20. 20.

    Mahowald, N. M. et al. Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res. Atmos. 111, D10202 (2006).

    Google Scholar 

  21. 21.

    Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326, 655–661 (1987).

    Article  Google Scholar 

  22. 22.

    Kulmala, M. et al. A new feedback mechanism linking forests, aerosols, and climate. Atmos. Chem. Phys. 4, 557–562 (2004).

    Article  Google Scholar 

  23. 23.

    Lihavainen, H., Asmi, E., Aaltonen, V., Makkonen, U. & Kerminen, V. M. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations. Environ. Res. Lett. 10, 104005 (2015).

    Article  Google Scholar 

  24. 24.

    Paasonen, P. et al. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat. Geosci. 6, 438–442 (2013).

    Article  Google Scholar 

  25. 25.

    Dusek, U. et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312, 1375–1378 (2006).

    Article  Google Scholar 

  26. 26.

    Mann, G. W. et al. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model Dev. 3, 519–551 (2010).

    Article  Google Scholar 

  27. 27.

    Lohmann, U. & Feichter, J. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005).

    Article  Google Scholar 

  28. 28.

    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  Google Scholar 

  29. 29.

    Guenther, A. B. et al. The Model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).

    Article  Google Scholar 

  30. 30.

    Voulgarakis, A. et al. Interannual variability of tropospheric trace gases and aerosols: the role of biomass burning emissions. J. Geophys. Res. Atmos. 120, 7157–7173 (2015).

    Article  Google Scholar 

  31. 31.

    Alves, E. G. et al. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia. Atmos. Chem. Phys. 16, 3903–3925 (2016).

    Article  Google Scholar 

  32. 32.

    Jardine, K. J. et al. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming. Plant Cell Environ. 40, 441–452 (2017).

    Article  Google Scholar 

  33. 33.

    Jardine, A. B. et al. Highly reactive light-dependent monoterpenes in the Amazon. Geophys. Res. Lett. 42, 1576–1583 (2015).

    Article  Google Scholar 

  34. 34.

    van der Werf, G. R., Randerson, J. T., Giglio, L. & Gobron, N. & Dolman, A. J. Climate controls on the variability of fires in the tropics and subtropics. Glob. Biogeochem. Cycles 22, GB3028 (2008).

    Google Scholar 

  35. 35.

    Tsigaridis, K., Lathiere, J., Kanakidou, M. & Hauglustaine, D. A. Naturally driven variability in the global secondary organic aerosol over a decade. Atmos. Chem. Phys. 5, 1891–1904 (2005).

    Article  Google Scholar 

  36. 36.

    Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877 (2013).

    Article  Google Scholar 

  37. 37.

    Zhu, Z. C. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  Google Scholar 

  38. 38.

    Zaehle, S., Jones, C. D., Houlton, B., Lamarque, J. F. & Robertson, E. Nitrogen availability reduces CMIP5 projections of twenty-first-century land carbon uptake. J. Clim. 28, 2494–2511 (2015).

    Article  Google Scholar 

  39. 39.

    Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).

    Article  Google Scholar 

  40. 40.

    Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    Article  Google Scholar 

  41. 41.

    Zhao, D. F. et al. Environmental conditions regulate the impact of plants on cloud formation. Nat. Commun. 8, 14067 (2017).

    Article  Google Scholar 

  42. 42.

    Heald, C. L. & Spracklen, D. V. Land use change impacts on air quality and climate. Chem. Rev. 115, 4476–4496 (2015).

    Article  Google Scholar 

  43. 43.

    Spracklen, D. V. & Rap, A. Natural aerosol–climate feedbacks suppressed by anthropogenic aerosol. Geophys. Res. Lett. 40, 5316–5319 (2013).

    Article  Google Scholar 

  44. 44.

    Thackeray, C. W. & Fletcher, C. G. Snow albedo feedback: current knowledge, importance, outstanding issues and future directions. Prog. Phys. Geogr. 40, 392–408 (2016).

    Article  Google Scholar 

  45. 45.

    Granier, C. et al. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period. Climatic Change 109, 163–190 (2011).

    Article  Google Scholar 

  46. 46.

    Nightingale, P. D. et al. In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14, 373–387 (2000).

    Article  Google Scholar 

  47. 47.

    Kettle, A. J. & Andreae, M. O. Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J. Geophys. Res. Atmos. 105, 26793–26808 (2000).

    Article  Google Scholar 

  48. 48.

    Gong, S. L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob. Biogeochem. Cycles 17, 1097 (2003).

    Article  Google Scholar 

  49. 49.

    Dentener, F. et al. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys. 6, 4321–4344 (2006).

    Article  Google Scholar 

  50. 50.

    Mann, G. W. et al. Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model. Atmos. Chem. Phys. 12, 4449–4476 (2012).

    Article  Google Scholar 

  51. 51.

    Metzger, A. et al. Evidence for the role of organics in aerosol particle formation under atmospheric conditions. Proc. Natl Acad. Sci. USA 107, 6646–6651 (2010).

    Article  Google Scholar 

  52. 52.

    Edwards, J. M. & Slingo, A. Studies with a flexible new radiation code.1. Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 122, 689–719 (1996).

    Article  Google Scholar 

  53. 53.

    Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

Download references


We acknowledge support from the Natural Environment Research Council (NE/K015966/1), EU Horizon 2020 (SC5-01-2014; grant agreement no 641816) and the Academy of Finland Centre of Excellence (grant nos 1118615 and 272041). We would like to thank the providers of measurement data for ref. 24. This work used the ARCHER UK National Supercomputing Service (

Author information




All authors contributed to the research design. C.E.S. and S.A.M. performed model simulations. A.A. and P.P. provided observational data. C.E.S., D.V.S. and S.R.A. analysed the data. All authors contributed to scientific discussions and helped to write the manuscript.

Corresponding authors

Correspondence to C. E. Scott or D. V. Spracklen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information.

Supplementary Figures and Tables

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott, C.E., Arnold, S.R., Monks, S.A. et al. Substantial large-scale feedbacks between natural aerosols and climate. Nature Geosci 11, 44–48 (2018).

Download citation

Further reading


Quick links