Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subsurface iceberg melt key to Greenland fjord freshwater budget

Abstract

Liquid freshwater fluxes from the Greenland ice sheet affect ocean water properties and circulation on local, regional and basin-wide scales, with associated biosphere effects. The exact impact, however, depends on the volume, timing and location of freshwater releases, which are poorly known. In particular, the transformation of icebergs, which make up roughly 30–50% of the loss of the ice-sheet mass to liquid freshwater, is not well understood. Here we estimate the spatial and temporal distribution of the freshwater flux for the Helheim–Sermilik glacier–fjord system in southeast Greenland using an iceberg-melt model that resolves the subsurface iceberg melt. By estimating seasonal variations in all the freshwater sources, we confirm quantitatively that iceberg melt is the largest annual freshwater source in this system type. We also show that 68–78% of the iceberg melt is released below a depth of 20 m and, seasonally, about 40–100% of that melt is likely to remain at depth, in contrast with the usual model assumptions. Iceberg melt also peaks two months after all the other freshwater sources peak. Our methods provide a framework to assess individual freshwater sources in any tidewater system, and our results are particularly applicable to coastal regions with a high solid-ice discharge in Greenland.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Helheim Glacier and Sermilik Fjord study region.
Fig. 2: Seasonal differences in the glacier–fjord environment.
Fig. 3: Iceberg melt mechanisms, seasonal oceanographic conditions, and individual and full fjord iceberg melt.
Fig. 4: Intra-annual liquid freshwater flux partitioned by source.

Similar content being viewed by others

References

  1. Enderlin, E. M., Hamilton, G. S., Straneo, F. & Sutherland, D. A. Iceberg meltwater fluxes dominate the freshwater budget in Greenland’s iceberg‐congested glacial fjords. Geophys. Res. Lett. 43, 287–294 (2016).

    Google Scholar 

  2. Bigg, G. R., Wadley, M. R., Stevens, D. P. & Johnson, J. A. Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Tech. 26, 113–135 (1997).

    Article  Google Scholar 

  3. Hill, J. C. & Condron, A. Subtropical iceberg scours and meltwater routing in the deglacial western North Atlantic. Nat. Geosci. 7, 806–810 (2014).

    Article  Google Scholar 

  4. Jackson, R. H. & Straneo, F. Heat, salt, and freshwater budgets for a glacial fjord in Greenland. J. Phys. Oceanogr. 46, 2735–2768 (2016).

    Article  Google Scholar 

  5. Luo, H. et al. Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nat. Geosci. 9, 528–532 (2016).

    Article  Google Scholar 

  6. Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K. & Bamber, J. L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 9, 523–527 (2016).

    Article  Google Scholar 

  7. Gillard, L. C., Hu, X., Myers, P. G. & Bamber, J. L. Meltwater pathways from marine terminating glaciers of the Greenland Ice Sheet. Geophys. Res. Lett. 43, 10873–10882 (2016).

    Article  Google Scholar 

  8. Mortensen, J., Lennert, K., Bendtsen, J. & Rysgaard, S. Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J. Geophys. Res. 116, C006528 (2011).

    Article  Google Scholar 

  9. Carroll, D. et al. Modeling turbulent subglacial meltwater plumes: implications for fjord-scale buoyancy-driven circulation. J. Phys. Oceanogr. 45, 2169–2185 (2015).

    Article  Google Scholar 

  10. Sciascia, R., Straneo, F., Cenedese, C. & Heimbach, P. Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. Oceans 118, 2492–2506 (2013).

    Article  Google Scholar 

  11. Carroll, D. et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett. 43, 9739–9748 (2016).

    Article  Google Scholar 

  12. Xu, Y., Rignot, E., Fenty, I., Menemenlis, D. & Mar Flexas, M. Subaqueous melting of Store Glacier, West Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett. 40, 4648–4653 (2013).

    Article  Google Scholar 

  13. Inall, M. E. et al. Oceanic heat delivery via Kangerdlugssuaq Fjord to the south-east Greenland ice sheet. J. Geophys. Res. Oceans 119, 631–645 (2014).

    Article  Google Scholar 

  14. Klinck, J. M., O’Brien, J. J. & Svendsen, H. A simple model of fjord and coastal circulation interaction. J. Phys. Oceanogr. 11, 1612–1626 (1981).

    Article  Google Scholar 

  15. Arneborg, L. Turnover times for the water above sill level in Gullmar Fjord. Continental Shelf Res. 24, 443–460 (2004).

    Article  Google Scholar 

  16. Straneo, F. & Cenedese, C. The dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Marine Sci 7, 89–112 (2015).

    Article  Google Scholar 

  17. Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).

    Article  Google Scholar 

  18. Motyka, R. J. et al. Submarine melting of the 1985 Jakobshavn Isbrae floating tongue and the triggering of the current retreat. J. Geophys. Res. 116, F01007 (2011).

    Article  Google Scholar 

  19. Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H. & Lyberth, B. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci. 1, 659–664 (2008).

    Article  Google Scholar 

  20. Bhatia, M. P. et al. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 6, 274–278 (2013).

    Article  Google Scholar 

  21. Arendt, K. E., Agersted, M. D., Sejr, M. K. & Juul-Pedersen, T. Glacial meltwater influences on plankton community structure and the importance of top-down control (of primary production) in a NE Greenland fjord. Estuarine Coastal Shelf Sci. 183, 123–135 (2016).

    Article  Google Scholar 

  22. Jenkins, A. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41, 2279–2294 (2011).

    Article  Google Scholar 

  23. Fried, M. J., Catania, G. A. & Bartholomaus, T. C. Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett. 42, 9328–9336 (2015).

    Article  Google Scholar 

  24. Christoffersen, P., O’Leary, M. & Van Angelen, J. H. & Van den Broeke, M. Partitioning effects from ocean and atmosphere on the calving stability of Kangerdlugssuaq Glacier, East Greenland. Ann. Glaciol. 53, 249–256 (2012).

    Article  Google Scholar 

  25. Andres, M., Silvano, A., Straneo, F. & Watts, D. R. Icebergs and sea ice detected with inverted echo sounders. J. Atmos. Oceanic Technol. 32, 1042–1057 (2015).

    Article  Google Scholar 

  26. Sulak, D. J., Sutherland, D. A. & Enderlin, E. M. Iceberg properties and distributions in three Greenlandic fjords using satellite imagery. Ann. Glaciol. 1–15 (2017).

  27. Oltmanns, M., Straneo, F., Moore, G. W. K. & Mernild, S. H. Strong downslope wind events in Ammassalik, SE Greenland. J. Climate 37, 977–993 (2013).

    Google Scholar 

  28. Straneo, F., Hamilton, G. S., Stearns, L. A. & Sutherland, D. A. Connecting the Greenland Ice Sheet and the ocean: a case study of Helheim Glacier and Sermilik Fjord. Oceanography 29, 34–45 (2016).

    Article  Google Scholar 

  29. Sutherland, D. A., Straneo, F. & Pickart, R. S. Characteristics and dynamics of two major Greenland glacial fjords. J. Geophys. Res. Oceans 119, 3767–3791 (2014).

    Article  Google Scholar 

  30. Straneo, F. et al. Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat. Geosci. 3, 182–187 (2010).

    Article  Google Scholar 

  31. Silva, T. A. M., Bigg, G. R. & Nicholls, K. W. Contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. 111, C03004–C03008 (2006).

    Google Scholar 

  32. Savage, S. B. in Geomorphological Fluid Mechanics (eds Balmforth, N. J. & Provenzale, A.) 279–318 (Lecture Notes in Physics 582, Springer, Heidelberg, 2001).

  33. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  34. Wagner, T., Wadhams, P. & Bates, R. The ‘footloose’ mechanism: iceberg decay from hydrostatic stresses. Geophys. Res. Lett. 41, 5522–5529 (2014).

    Article  Google Scholar 

  35. FitzMaurice, A., Straneo, F., Cenedese, C. & Andres, M. Effect of a sheared flow on iceberg motion and melting. Geophys. Res. Lett. 43, 12520–12527 (2016).

    Article  Google Scholar 

  36. Jenkins, A. in Ice in the Climate System Mechanics (ed. Peltier, W. R.) 217–235 (NATO ASI Series 12, Springer, Heidelberg, 1993).

  37. Wilton, D. J., Bigg, G. R. & Hanna, E. Modelling twentieth century global ocean circulation and iceberg flux at 48°N: implications for west Greenland iceberg discharge. Prog. Oceanogr. 138, 194–210 (2015).

    Article  Google Scholar 

  38. Noël, B. et al. A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015). Cryosphere 10, 2361–2377 (2016).

    Article  Google Scholar 

  39. Smith, L. C. et al. Direct measurements of meltwater runoff on the Greenland Ice Sheet surface. Proc. Natl Acad. Sci. USA http://doi.org/10.1073/pnas.1707743114 (in the press).

  40. Enderlin, E. M. et al. An improved mass budget for the Greenland Ice Sheet. Geophys. Res. Lett. 41, 866–872 (2014).

    Article  Google Scholar 

  41. Kjeldsen, K. K. et al. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature 528, 396–400 (2015).

    Article  Google Scholar 

  42. Moon, T., Joughin, I., Smith, B. & Howat, I. 21st-century evolution of Greenland outlet glacier velocities. Science 336, 576–578 (2012).

    Article  Google Scholar 

  43. Bamber, J., Van Den Broeke, M., Ettema, J., Lenaerts, J. & Rignot, E. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 39, L19501 (2012).

    Article  Google Scholar 

  44. van den Broeke, M. R. et al. On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 10, 1933–1946 (2016).

    Article  Google Scholar 

  45. Fenty, I. et al. Oceans melting Greenland: early results from NASA’s ocean-ice mission in Greenland. Oceanography 29, 72–83 (2016).

    Article  Google Scholar 

  46. Stearns, L. A. et al. Quantification of calving rates and iceberg size distribution in West Greenland. In 2016 Ocean Sci. Meeting (AGU, ASLO, TOS, New Orleans, 2016).

  47. Fyke, J. G., Vizcaíno, M., Lipscomb, W. & Price, S. Future climate warming increases Greenland ice sheet surface mass balance variability. Geophys. Res. Lett. 41, 470–475 (2014).

    Article  Google Scholar 

  48. Fürst, J. J., Goelzer, H. & Huybrechts, P. Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming. Cryosphere 9, 1039–1062 (2015).

    Article  Google Scholar 

  49. Barker, A., Sayed, M., & Carrieres, T. Determination of iceberg draft, mass and cross-sectional areas NRC Publications Archive (NPArC). In Proc. 14th Int. Offshore Polar Engin. Conf. 899–904 (National Research Council Canada, Ottawa, 2004).

  50. Dowdeswell, J. A., Whittington, R. J. & Hodgkins, R. The sizes, frequencies, and freeboards of East Greenland icebergs observed using ship radar and sextant. J. Geophys. Res. 97, 3515–3528 (1992).

    Article  Google Scholar 

  51. Wagner, T. J. W. & Eisenman, I. How climate model biases skew the distribution of iceberg meltwater. Geophys. Res. Lett. 44, 3691–3699 (2017).

    Article  Google Scholar 

  52. Weeks, W. F., & Mellor, M. Some Elements of Iceberg Technology Technical Report (Cold Regions Research and Engineering Laboratory, Hanover, 1978).

  53. Burton, J. C. et al. Laboratory investigations of iceberg capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res. Earth 117, F01007 (2012).

    Google Scholar 

  54. Jackson, R. H., Straneo, F. & Sutherland, D. A. Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci. 7, 503–508 (2014).

    Article  Google Scholar 

  55. Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 5753–5766 (1997).

    Article  Google Scholar 

  56. Moon, T. et al. Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett. 41, 7209–7216 (2014).

    Article  Google Scholar 

  57. Shapero, D. R., Joughin, I. R., Poinar, K., Morlighem, M. & Gillet-Chaulet, F. Basal resistance for three of the largest Greenland outlet glaciers. J. Geophys. Res. Earth 121, 168–180 (2016).

    Article  Google Scholar 

  58. Kehrl, L. M., Joughin, I., Shean, D. E., Floricioiu, D. & Krieger, L. Seasonal and interannual variability in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016. J. Geophys. Res. Earth 122, 1635–1652 (2017).

    Article  Google Scholar 

  59. Joughin, I., Smith, B. E., Howat, I. M., Scambos, T. A. & Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 56, 415–430 (2010).

    Article  Google Scholar 

  60. Howat, I. M. MEaSURES Greenland Ice Velocity: Selected Glacier Site Velocity Maps from Optical Images, Version 1 (NASA, National Snow and Ice Data Center, Distributed Active Archive Center, Boulder, 2016).

  61. Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H. & Larour, E. Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci. 7, 418–422 (2014).

    Article  Google Scholar 

  62. Studinger, M. & IceBridge A. T. M. L2 Icessn Elevation, Slope, and Roughness, Version 2 (NASA, National Snow and Ice Data Center, Distributed Active Archive Center, Boulder, 2017).

  63. Shreve, R. L. Movement of water in glaciers. J. Glaciol. 11, 205–214 (1972).

    Article  Google Scholar 

  64. Howat, I. M., Negrete, A. & Smith, B. E. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509–1518 (2014).

    Article  Google Scholar 

  65. Kienholz, C., Hock, R. & Arendt, A. A. A new semi-automatic approach for dividing glacier complexes into individual glaciers. J. Glaciol. 59, 925–937 (2013).

    Article  Google Scholar 

  66. Magorrian, S. J. & Wells, A. J. Turbulent plumes from a glacier terminus melting in a stratified ocean. J. Geophys. Res. Oceans 121, 4670–4696 (2016).

    Article  Google Scholar 

  67. Holland, D. M. & Jenkins, A. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29, 1787–1800 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. van den Broeke and B. Noël for downscaled RACMO2.3 data, I. Joughin for TerraSAR-X ice-velocity data through the NASA-funded MEaSUREs Program (NNX13AI21A) and S. Powell for illustrations. T.M. was in part supported by National Science Foundation (NSF) Ocean Sciences (OCE) 1420096. D.A.S. was partially supported by NSF grant 1552232. L.K. was supported by a National Defense Science & Engineering Graduate Fellowship. F.S. was supported by NSF PLR 1418256 and OCE 1434041. Synthesis of the Sermilik Fjord data was supported by EarthCube GRISO RCN NSF ICER 1541390.

Author information

Authors and Affiliations

Authors

Contributions

T.M. and D.A.S. designed the study and led the analysis and writing. L.K. contributed glacier discharge data and analysis, D.F. contributed hydrology-catchment basins and data sampling, D.C. modelled buoyant plumes and terminus melt, and F.S. contributed oceanographic data and interpretation. All of the authors contributed to the final manuscript.

Corresponding author

Correspondence to T. Moon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Methods, Figures and Tables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, T., Sutherland, D.A., Carroll, D. et al. Subsurface iceberg melt key to Greenland fjord freshwater budget. Nature Geosci 11, 49–54 (2018). https://doi.org/10.1038/s41561-017-0018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-017-0018-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing