Liquid freshwater fluxes from the Greenland ice sheet affect ocean water properties and circulation on local, regional and basin-wide scales, with associated biosphere effects. The exact impact, however, depends on the volume, timing and location of freshwater releases, which are poorly known. In particular, the transformation of icebergs, which make up roughly 30–50% of the loss of the ice-sheet mass to liquid freshwater, is not well understood. Here we estimate the spatial and temporal distribution of the freshwater flux for the Helheim–Sermilik glacier–fjord system in southeast Greenland using an iceberg-melt model that resolves the subsurface iceberg melt. By estimating seasonal variations in all the freshwater sources, we confirm quantitatively that iceberg melt is the largest annual freshwater source in this system type. We also show that 68–78% of the iceberg melt is released below a depth of 20 m and, seasonally, about 40–100% of that melt is likely to remain at depth, in contrast with the usual model assumptions. Iceberg melt also peaks two months after all the other freshwater sources peak. Our methods provide a framework to assess individual freshwater sources in any tidewater system, and our results are particularly applicable to coastal regions with a high solid-ice discharge in Greenland.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Enderlin, E. M., Hamilton, G. S., Straneo, F. & Sutherland, D. A. Iceberg meltwater fluxes dominate the freshwater budget in Greenland’s iceberg‐congested glacial fjords. Geophys. Res. Lett. 43, 287–294 (2016).

  2. 2.

    Bigg, G. R., Wadley, M. R., Stevens, D. P. & Johnson, J. A. Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Tech. 26, 113–135 (1997).

  3. 3.

    Hill, J. C. & Condron, A. Subtropical iceberg scours and meltwater routing in the deglacial western North Atlantic. Nat. Geosci. 7, 806–810 (2014).

  4. 4.

    Jackson, R. H. & Straneo, F. Heat, salt, and freshwater budgets for a glacial fjord in Greenland. J. Phys. Oceanogr. 46, 2735–2768 (2016).

  5. 5.

    Luo, H. et al. Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nat. Geosci. 9, 528–532 (2016).

  6. 6.

    Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K. & Bamber, J. L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 9, 523–527 (2016).

  7. 7.

    Gillard, L. C., Hu, X., Myers, P. G. & Bamber, J. L. Meltwater pathways from marine terminating glaciers of the Greenland Ice Sheet. Geophys. Res. Lett. 43, 10873–10882 (2016).

  8. 8.

    Mortensen, J., Lennert, K., Bendtsen, J. & Rysgaard, S. Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J. Geophys. Res. 116, C006528 (2011).

  9. 9.

    Carroll, D. et al. Modeling turbulent subglacial meltwater plumes: implications for fjord-scale buoyancy-driven circulation. J. Phys. Oceanogr. 45, 2169–2185 (2015).

  10. 10.

    Sciascia, R., Straneo, F., Cenedese, C. & Heimbach, P. Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res. Oceans 118, 2492–2506 (2013).

  11. 11.

    Carroll, D. et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett. 43, 9739–9748 (2016).

  12. 12.

    Xu, Y., Rignot, E., Fenty, I., Menemenlis, D. & Mar Flexas, M. Subaqueous melting of Store Glacier, West Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett. 40, 4648–4653 (2013).

  13. 13.

    Inall, M. E. et al. Oceanic heat delivery via Kangerdlugssuaq Fjord to the south-east Greenland ice sheet. J. Geophys. Res. Oceans 119, 631–645 (2014).

  14. 14.

    Klinck, J. M., O’Brien, J. J. & Svendsen, H. A simple model of fjord and coastal circulation interaction. J. Phys. Oceanogr. 11, 1612–1626 (1981).

  15. 15.

    Arneborg, L. Turnover times for the water above sill level in Gullmar Fjord. Continental Shelf Res. 24, 443–460 (2004).

  16. 16.

    Straneo, F. & Cenedese, C. The dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Marine Sci 7, 89–112 (2015).

  17. 17.

    Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).

  18. 18.

    Motyka, R. J. et al. Submarine melting of the 1985 Jakobshavn Isbrae floating tongue and the triggering of the current retreat. J. Geophys. Res. 116, F01007 (2011).

  19. 19.

    Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H. & Lyberth, B. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci. 1, 659–664 (2008).

  20. 20.

    Bhatia, M. P. et al. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 6, 274–278 (2013).

  21. 21.

    Arendt, K. E., Agersted, M. D., Sejr, M. K. & Juul-Pedersen, T. Glacial meltwater influences on plankton community structure and the importance of top-down control (of primary production) in a NE Greenland fjord. Estuarine Coastal Shelf Sci. 183, 123–135 (2016).

  22. 22.

    Jenkins, A. Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr. 41, 2279–2294 (2011).

  23. 23.

    Fried, M. J., Catania, G. A. & Bartholomaus, T. C. Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier. Geophys. Res. Lett. 42, 9328–9336 (2015).

  24. 24.

    Christoffersen, P., O’Leary, M. & Van Angelen, J. H. & Van den Broeke, M. Partitioning effects from ocean and atmosphere on the calving stability of Kangerdlugssuaq Glacier, East Greenland. Ann. Glaciol. 53, 249–256 (2012).

  25. 25.

    Andres, M., Silvano, A., Straneo, F. & Watts, D. R. Icebergs and sea ice detected with inverted echo sounders. J. Atmos. Oceanic Technol. 32, 1042–1057 (2015).

  26. 26.

    Sulak, D. J., Sutherland, D. A. & Enderlin, E. M. Iceberg properties and distributions in three Greenlandic fjords using satellite imagery. Ann. Glaciol. 1–15 (2017).

  27. 27.

    Oltmanns, M., Straneo, F., Moore, G. W. K. & Mernild, S. H. Strong downslope wind events in Ammassalik, SE Greenland. J. Climate 37, 977–993 (2013).

  28. 28.

    Straneo, F., Hamilton, G. S., Stearns, L. A. & Sutherland, D. A. Connecting the Greenland Ice Sheet and the ocean: a case study of Helheim Glacier and Sermilik Fjord. Oceanography 29, 34–45 (2016).

  29. 29.

    Sutherland, D. A., Straneo, F. & Pickart, R. S. Characteristics and dynamics of two major Greenland glacial fjords. J. Geophys. Res. Oceans 119, 3767–3791 (2014).

  30. 30.

    Straneo, F. et al. Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat. Geosci. 3, 182–187 (2010).

  31. 31.

    Silva, T. A. M., Bigg, G. R. & Nicholls, K. W. Contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. 111, C03004–C03008 (2006).

  32. 32.

    Savage, S. B. in Geomorphological Fluid Mechanics (eds Balmforth, N. J. & Provenzale, A.) 279–318 (Lecture Notes in Physics 582, Springer, Heidelberg, 2001).

  33. 33.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

  34. 34.

    Wagner, T., Wadhams, P. & Bates, R. The ‘footloose’ mechanism: iceberg decay from hydrostatic stresses. Geophys. Res. Lett. 41, 5522–5529 (2014).

  35. 35.

    FitzMaurice, A., Straneo, F., Cenedese, C. & Andres, M. Effect of a sheared flow on iceberg motion and melting. Geophys. Res. Lett. 43, 12520–12527 (2016).

  36. 36.

    Jenkins, A. in Ice in the Climate System Mechanics (ed. Peltier, W. R.) 217–235 (NATO ASI Series 12, Springer, Heidelberg, 1993).

  37. 37.

    Wilton, D. J., Bigg, G. R. & Hanna, E. Modelling twentieth century global ocean circulation and iceberg flux at 48°N: implications for west Greenland iceberg discharge. Prog. Oceanogr. 138, 194–210 (2015).

  38. 38.

    Noël, B. et al. A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015). Cryosphere 10, 2361–2377 (2016).

  39. 39.

    Smith, L. C. et al. Direct measurements of meltwater runoff on the Greenland Ice Sheet surface. Proc. Natl Acad. Sci. USA http://doi.org/10.1073/pnas.1707743114 (in the press).

  40. 40.

    Enderlin, E. M. et al. An improved mass budget for the Greenland Ice Sheet. Geophys. Res. Lett. 41, 866–872 (2014).

  41. 41.

    Kjeldsen, K. K. et al. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature 528, 396–400 (2015).

  42. 42.

    Moon, T., Joughin, I., Smith, B. & Howat, I. 21st-century evolution of Greenland outlet glacier velocities. Science 336, 576–578 (2012).

  43. 43.

    Bamber, J., Van Den Broeke, M., Ettema, J., Lenaerts, J. & Rignot, E. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 39, L19501 (2012).

  44. 44.

    van den Broeke, M. R. et al. On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 10, 1933–1946 (2016).

  45. 45.

    Fenty, I. et al. Oceans melting Greenland: early results from NASA’s ocean-ice mission in Greenland. Oceanography 29, 72–83 (2016).

  46. 46.

    Stearns, L. A. et al. Quantification of calving rates and iceberg size distribution in West Greenland. In 2016 Ocean Sci. Meeting (AGU, ASLO, TOS, New Orleans, 2016).

  47. 47.

    Fyke, J. G., Vizcaíno, M., Lipscomb, W. & Price, S. Future climate warming increases Greenland ice sheet surface mass balance variability. Geophys. Res. Lett. 41, 470–475 (2014).

  48. 48.

    Fürst, J. J., Goelzer, H. & Huybrechts, P. Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming. Cryosphere 9, 1039–1062 (2015).

  49. 49.

    Barker, A., Sayed, M., & Carrieres, T. Determination of iceberg draft, mass and cross-sectional areas NRC Publications Archive (NPArC). In Proc. 14th Int. Offshore Polar Engin. Conf. 899–904 (National Research Council Canada, Ottawa, 2004).

  50. 50.

    Dowdeswell, J. A., Whittington, R. J. & Hodgkins, R. The sizes, frequencies, and freeboards of East Greenland icebergs observed using ship radar and sextant. J. Geophys. Res. 97, 3515–3528 (1992).

  51. 51.

    Wagner, T. J. W. & Eisenman, I. How climate model biases skew the distribution of iceberg meltwater. Geophys. Res. Lett. 44, 3691–3699 (2017).

  52. 52.

    Weeks, W. F., & Mellor, M. Some Elements of Iceberg Technology Technical Report (Cold Regions Research and Engineering Laboratory, Hanover, 1978).

  53. 53.

    Burton, J. C. et al. Laboratory investigations of iceberg capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res. Earth 117, F01007 (2012).

  54. 54.

    Jackson, R. H., Straneo, F. & Sutherland, D. A. Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci. 7, 503–508 (2014).

  55. 55.

    Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 5753–5766 (1997).

  56. 56.

    Moon, T. et al. Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett. 41, 7209–7216 (2014).

  57. 57.

    Shapero, D. R., Joughin, I. R., Poinar, K., Morlighem, M. & Gillet-Chaulet, F. Basal resistance for three of the largest Greenland outlet glaciers. J. Geophys. Res. Earth 121, 168–180 (2016).

  58. 58.

    Kehrl, L. M., Joughin, I., Shean, D. E., Floricioiu, D. & Krieger, L. Seasonal and interannual variability in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016. J. Geophys. Res. Earth 122, 1635–1652 (2017).

  59. 59.

    Joughin, I., Smith, B. E., Howat, I. M., Scambos, T. A. & Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 56, 415–430 (2010).

  60. 60.

    Howat, I. M. MEaSURES Greenland Ice Velocity: Selected Glacier Site Velocity Maps from Optical Images, Version 1 (NASA, National Snow and Ice Data Center, Distributed Active Archive Center, Boulder, 2016).

  61. 61.

    Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H. & Larour, E. Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nat. Geosci. 7, 418–422 (2014).

  62. 62.

    Studinger, M. & IceBridge A. T. M. L2 Icessn Elevation, Slope, and Roughness, Version 2 (NASA, National Snow and Ice Data Center, Distributed Active Archive Center, Boulder, 2017).

  63. 63.

    Shreve, R. L. Movement of water in glaciers. J. Glaciol. 11, 205–214 (1972).

  64. 64.

    Howat, I. M., Negrete, A. & Smith, B. E. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509–1518 (2014).

  65. 65.

    Kienholz, C., Hock, R. & Arendt, A. A. A new semi-automatic approach for dividing glacier complexes into individual glaciers. J. Glaciol. 59, 925–937 (2013).

  66. 66.

    Magorrian, S. J. & Wells, A. J. Turbulent plumes from a glacier terminus melting in a stratified ocean. J. Geophys. Res. Oceans 121, 4670–4696 (2016).

  67. 67.

    Holland, D. M. & Jenkins, A. Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29, 1787–1800 (1999).

Download references


We thank M. van den Broeke and B. Noël for downscaled RACMO2.3 data, I. Joughin for TerraSAR-X ice-velocity data through the NASA-funded MEaSUREs Program (NNX13AI21A) and S. Powell for illustrations. T.M. was in part supported by National Science Foundation (NSF) Ocean Sciences (OCE) 1420096. D.A.S. was partially supported by NSF grant 1552232. L.K. was supported by a National Defense Science & Engineering Graduate Fellowship. F.S. was supported by NSF PLR 1418256 and OCE 1434041. Synthesis of the Sermilik Fjord data was supported by EarthCube GRISO RCN NSF ICER 1541390.

Author information

Author notes

    • D. Carroll

    Present address: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

    • F. Straneo

    Present address: Scripps Institution of Oceanography, University of California, San Diego, CA, USA


  1. National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

    • T. Moon
  2. Department of Earth Sciences, University of Oregon, Eugene, OR, USA

    • D. A. Sutherland
    •  & D. Carroll
  3. Institute for Geophysics, University of Texas at Austin, Austin, TX, USA

    • D. Felikson
  4. Polar Science Center, Applied Physics Lab and Department of Earth & Space Sciences, University of Washington, Seattle, WA, USA

    • L. Kehrl
  5. Dept. of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

    • F. Straneo


  1. Search for T. Moon in:

  2. Search for D. A. Sutherland in:

  3. Search for D. Carroll in:

  4. Search for D. Felikson in:

  5. Search for L. Kehrl in:

  6. Search for F. Straneo in:


T.M. and D.A.S. designed the study and led the analysis and writing. L.K. contributed glacier discharge data and analysis, D.F. contributed hydrology-catchment basins and data sampling, D.C. modelled buoyant plumes and terminus melt, and F.S. contributed oceanographic data and interpretation. All of the authors contributed to the final manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to T. Moon.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Methods, Figures and Tables

About this article

Publication history






Further reading