The Martian subsurface as a potential window into the origin of life


Few traces of Earth’s geologic record are preserved from the time of life’s emergence, over 3,800 million years ago. Consequently, what little we understand about abiogenesis — the origin of life on Earth — is based primarily on laboratory experiments and theory. The best geological lens for understanding early Earth might actually come from Mars, a planet with a crust that’s overall far more ancient than our own. On Earth, surface sedimentary environments are thought to best preserve evidence of ancient life, but this is mostly because our planet has been dominated by high photosynthetic biomass production at the surface for the last ~2,500 million years or more. By the time oxygenic photosynthesis evolved on Earth, Mars had been a hyperarid, frozen desert with a surface bombarded by high-energy solar and cosmic radiation for more than a billion years, and as a result, photosynthetic surface life may never have occurred on Mars. Therefore, one must question whether searching for evidence of life in Martian surface sediments is the best strategy. This Perspective explores the possibility that the abundant hydrothermal environments on Mars might provide more valuable insights into life’s origins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A comparison of the age of planetary crust.
Fig. 2: A comparison of key events in the histories of the Earth and Mars.


Fig. 3: Hydrothermal and exhumed, altered subsurface deposits on Mars.
Fig. 4: A comparison of the average porosity and thermal gradients of the crusts of Earth and Mars.


  1. 1.

    Herd, C. D. K. et al. Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorite. Science 332, 1304–1307 (2011).

    Article  Google Scholar 

  2. 2.

    Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355–356, 144–151 (2012).

    Article  Google Scholar 

  3. 3.

    Sleep, N. H. & Zahnle, K. Refugia from asteroid impacts on early Mars and the early Earth. J. Geophys. Res. 103, 28529–28544 (1998).

    Article  Google Scholar 

  4. 4.

    Rosing, M. T. & Frei, R. U-rich Archaean sea-floor sediments from Greenland — indications of >3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217, 237–244 (2004).

    Article  Google Scholar 

  5. 5.

    Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996).

    Article  Google Scholar 

  6. 6.

    Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538 (2016).

    Article  Google Scholar 

  7. 7.

    Bell, E. A., Boehnke, P., Harrison, T. M. & Mao, W. L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl Acad. Sci. USA 112, 14518–14521 (2015).

    Article  Google Scholar 

  8. 8.

    Abramov, O. & Mojzsis, S. J. Thermal effects of impact bombardments on Noachian Mars. Earth Planet. Sci. Lett. 442, 108–120 (2016).

    Article  Google Scholar 

  9. 9.

    Miller, S. L. & Urey, H. C. Organic compound synthesis on the primitive earth. Science 130, 245–251 (1959).

    Article  Google Scholar 

  10. 10.

    Szostak, J. W. et al. Synthesizing life. Nature 409, 387–390 (2001).

    Article  Google Scholar 

  11. 11.

    Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    Article  Google Scholar 

  12. 12.

    Oró, J. & Kimball, A. P. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 94, 217–227 (1961).

    Article  Google Scholar 

  13. 13.

    Ricardo, A., Carrigan, M. A., Olcott, A. N. & Benner, S. A. Borate minerals stabilize ribose. Science 303, 196 (2004).

    Article  Google Scholar 

  14. 14.

    Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).

    Article  Google Scholar 

  15. 15.

    Schmidt, B. E., Blankenship, D. D., Patterson, G. W. & Schenk, P. M. Active formation of ‘chaos terrain’ over shallow subsurface water on Europa. Nature 479, 502–505 (2011).

    Article  Google Scholar 

  16. 16.

    Patthoff, D. A. & Kattenhorn, S. A. A fracture history on Enceladus provides evidence for a global ocean. Geophys. Res. Lett. 38, L048387 (2011).

    Article  Google Scholar 

  17. 17.

    Vance, S. et al. Hydrothermal systems in small ocean planets. Astrobiology 7, 987–1005 (2007).

    Article  Google Scholar 

  18. 18.

    Russell, M. J. et al. The drive to life on wet and icy worlds. Astrobiology 14, 308–343 (2014).

    Article  Google Scholar 

  19. 19.

    Běhounková, M. et al. Timing of water plume eruptions on Enceladus explained by interior viscosity structure. Nat. Geosci. 8, 1–6 (2015).

    Article  Google Scholar 

  20. 20.

    Sparks, W. B. et al. Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829, 121 (2016).

    Article  Google Scholar 

  21. 21.

    Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y. & Koonin, E. V. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl Acad. Sci. USA 109, E821–E830 (2012).

    Article  Google Scholar 

  22. 22.

    Deamer, D. W. & Georgiou, C. D. Hydrothermal conditions and the origin of cellular life. Astrobiology 15, 1091–1095 (2015).

    Article  Google Scholar 

  23. 23.

    Golombek, M. P. et al. Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. 111, 1–14 (2006).

    Google Scholar 

  24. 24.

    Zuber, M. T. The crust and mantle of Mars. Nature 412, 220–227 (2001).

    Article  Google Scholar 

  25. 25.

    Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S. & Frey, H. V. Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. 118, 1488–1511 (2013).

    Article  Google Scholar 

  26. 26.

    Kminek, G. & Bada, J. L. The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet. Sci. Lett. 245, 1–5 (2006).

    Article  Google Scholar 

  27. 27.

    Lammer, H. et al. Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013).

    Article  Google Scholar 

  28. 28.

    Carter, J., Poulet, F., Bibring, J. P., Mangold, N. & Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. 118, 831–858 (2013).

    Article  Google Scholar 

  29. 29.

    Carter, J., Loizeau, D., Mangold, N., Poulet, F. & Bibring, J. P. Widespread surface weathering on early Mars: a case for a warmer and wetter climate. Icarus 248, 373–382 (2014).

    Article  Google Scholar 

  30. 30.

    Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).

    Article  Google Scholar 

  31. 31.

    Ruff, S. W. & Farmer, J. D. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat. Commun. 7, 1–10 (2016).

    Article  Google Scholar 

  32. 32.

    Skok, J. R., Mustard, J. F., Ehlmann, B. L., Milliken, R. E. & Murchie, S. L. Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nat. Geosci. 3, 838–841 (2010).

    Article  Google Scholar 

  33. 33.

    Marzo, G. A. et al. Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 208, 667–683 (2010).

    Article  Google Scholar 

  34. 34.

    Turner, S. M. R., Bridges, J. C., Grebby, S. & Ehlmann, B. L. Hydrothermal activity recorded in post Noachian-aged impact craters on Mars. J. Geophys. Res. Planets 121, 608–625 (2016).

    Article  Google Scholar 

  35. 35.

    Cockell, C. S. et al. Habitability: a review. Astrobiology 16, 89–117 (2016).

    Article  Google Scholar 

  36. 36.

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    Article  Google Scholar 

  37. 37.

    Onstott, T. C., Colwell, F. S., Kieft, T. L., Murdoch, L. & Phelps, T. J. New horizons for deep subsurface microbiology. Microbe 4, 499–505 (2009).

    Google Scholar 

  38. 38.

    Stevens, T. O. & Mckinley, J. P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454 (1995).

    Article  Google Scholar 

  39. 39.

    Pedersen, K. Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20, 399–414 (1997).

    Article  Google Scholar 

  40. 40.

    Coveney, R. M., Goebel, E. D., Zeller, E. J., Dreschhoff, G. A. M. & Angino, E. E. Serpentinization and the origin of hydrogen gas in Kansas (USA). Am. Assoc. Petrol. Geologists Bull. 71, 39–48 (1987).

    Google Scholar 

  41. 41.

    Lin, L.-H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479–82 (2006).

    Article  Google Scholar 

  42. 42.

    Michalski, J. R. et al. Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 6, 133–138 (2013).

    Article  Google Scholar 

  43. 43.

    Takai, K. et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).

    Article  Google Scholar 

  44. 44.

    Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307, 1428–1434 (2005).

    Article  Google Scholar 

  45. 45.

    Parnell, J., Boyce, A. J. & Blamey, N. J. F. Follow the methane: the search for a deep biosphere, and the case for sampling serpentinites, on Mars. Int. J. Astrobiol 9, 193–200 (2010).

    Article  Google Scholar 

  46. 46.

    Onstott, T. C. et al. Martian CH4: sources, flux, and detection. Astrobiology 6, 377–395 (2006).

    Article  Google Scholar 

  47. 47.

    Niles, P. B. et al. Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. 174, 301–328 (2013).

    Article  Google Scholar 

  48. 48.

    Russell, M. J., Hall, A. J. & Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 8, 355–371 (2010).

    Article  Google Scholar 

  49. 49.

    Dismukes, G. C. et al. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 98, 2170–5 (2001).

    Article  Google Scholar 

  50. 50.

    Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436–1440 (2017).

    Article  Google Scholar 

  51. 51.

    Shih, P. M., Hemp, J., Ward, L. M., Matzke, N. J. & Fischer, W. W. Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology 15, 19–29 (2017).

    Article  Google Scholar 

  52. 52.

    Johnson, J. E. et al. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl Acad. Sci. USA 110, 11238–11243 (2013).

    Article  Google Scholar 

  53. 53.

    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  Google Scholar 

  54. 54.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  55. 55.

    Davila, A. F. & Schulze-Makuch, D. The last possible outposts for life on Mars. Astrobiology 16, 159–168 (2016).

    Article  Google Scholar 

  56. 56.

    Veizer, J. & Mackenzie, F. T. Treatise on Geochemistry: Second Edition 9 399–435, (Elsevier, Heinrich, 2013).

    Google Scholar 

  57. 57.

    Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of ‘warm and wet’ and ‘cold and icy’ scenarios for early Mars in a 3-D climate model. J. Geophys. Res. 120, 1201–1219 (2015).

    Article  Google Scholar 

  58. 58.

    Wordsworth, R. et al. Global modelling of the early martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

    Article  Google Scholar 

  59. 59.

    De Villiers, G., Kleinhans, M. G. & Postma, G. Experimental delta formation in crater lakes and implications for interpretation of Martian deltas. J. Geophys. Res. 118, 651–670 (2013).

    Article  Google Scholar 

  60. 60.

    Fassett, C. I. & H., J. W. III Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 32, 1–5 (2005).

    Article  Google Scholar 

  61. 61.

    Fassett, C. I. & Head, J. W. Sequence and timing of conditions on early Mars. Icarus 211, 1204–1214 (2011).

    Article  Google Scholar 

  62. 62.

    Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol 1, 16170 (2016).

    Article  Google Scholar 

  63. 63.

    Dadachova, E. & Casadevall, A. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr. Opin. Microbiol. 11, 525–531 (2008).

    Article  Google Scholar 

  64. 64.

    Kato, K. et al. Microbial Mat Boundaries between chemolithotrophs and phototrophs in geothermal hot spring effluents. Geomicrobiol. J. 21, 91–98 (2004).

    Article  Google Scholar 

  65. 65.

    Pedersen, K. et al. Evidence of ancient life at 207 m depth in a granitic aquifer. Geology 25, 827–830 (1997).

    Article  Google Scholar 

  66. 66.

    Klein, F. et al. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin. Proc. Natl Acad. Sci. USA 112, 12036–41 (2015).

    Article  Google Scholar 

  67. 67.

    Ringelberg, D. B., Sutton, S. & White, D. C. Biomass, bioactivity and biodiversity: microbial ecology of the deep subsurface: analysis of ester-linked phospholipid fatty acids. FEMS Microbiol. Rev. 20, 371–377 (1997).

    Article  Google Scholar 

  68. 68.

    Ehrenfreund, P., Glavin, D. P., Botta, O., Cooper, G. & Bada, J. L. Extraterrestrial amino acids in Orgueil and Ivuna: tracing the parent body of CI type carbonaceous chondrites. Proc. Natl Acad. Sci. USA 98, 2138–2141 (2001).

    Article  Google Scholar 

  69. 69.

    Bada, J. L. & McDonald, G. D. Amino Acid Racemization on Mars: implications for the preservation of biomolecules from an extinct Martian biota. Icarus 114, 139–143 (1995).

    Article  Google Scholar 

  70. 70.

    Phoenix, V. R., Konhauser, K. O., Adams, D. G. & Bottrell, S. H. Role of biomineralization as an ultraviolet shield: implications for Archean life. Geology 29, 823–826 (2002).

    Article  Google Scholar 

  71. 71.

    Taylor, S. R. & McLennan, S. M. Planetary Crusts: Their Composition, Origin and Evolution (Cambridge University Press, Cambridge, 2009).

    Google Scholar 

  72. 72.

    Poulet, F. et al. Martian surface mineralogy from Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activite on board the Mars Express spacecraft (OMEGA/MEx): global mineral maps. J. Geophys. Res. 112, E002840 (2007).

    Article  Google Scholar 

  73. 73.

    Murchie, S. et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112, E002682 (2007).

    Article  Google Scholar 

  74. 74.

    Michalski, J. R. & Niles, P. B. Deep crustal carbonate rocks exposed by meteor impact on Mars. Nat. Geosci. 3, 751–755 (2010).

    Article  Google Scholar 

  75. 75.

    Wray, J. J. et al. Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res. 121, 652–677 (2016).

    Article  Google Scholar 

  76. 76.

    Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L06201 (2010).

    Article  Google Scholar 

  77. 77.

    Squyres, S. W. et al. Detection of silica-rich deposits on Mars. Science 320, 1063–1067 (2008).

    Article  Google Scholar 

  78. 78.

    Michalski, J. R., Dobrea, E. Z. N., Niles, P. B. & Cuadros, J. Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat Commun. 8, 15978 (2017).

  79. 79.

    McGovern, P. J. et al. Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution. J. Geophys. Res. 107, 19–25 (2002).

    Google Scholar 

Download references


We wish to acknowledge NASA for sponsoring open workshops surrounding the landing site selection for Mars rovers, and specifically the upcoming Mars 2020 rover mission. This work benefited from discussion during landing site selection meetings, as well as the NASA-sponsored conference on Biosignature Preservation and Detection in Mars Analog Environments held in Lake Tahoe in May of 2016 and the Rock Hosted Life Workshop held in February 2017 at the California Institute of Technology in Pasadena, CA.

Author information



Corresponding author

Correspondence to Joseph R. Michalski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Michalski, J.R., Onstott, T.C., Mojzsis, S.J. et al. The Martian subsurface as a potential window into the origin of life. Nature Geosci 11, 21–26 (2018).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing