The Martian subsurface as a potential window into the origin of life

  • Nature Geosciencevolume 11pages2126 (2018)
  • doi:10.1038/s41561-017-0015-2
  • Download Citation
Published online:


Few traces of Earth’s geologic record are preserved from the time of life’s emergence, over 3,800 million years ago. Consequently, what little we understand about abiogenesis — the origin of life on Earth — is based primarily on laboratory experiments and theory. The best geological lens for understanding early Earth might actually come from Mars, a planet with a crust that’s overall far more ancient than our own. On Earth, surface sedimentary environments are thought to best preserve evidence of ancient life, but this is mostly because our planet has been dominated by high photosynthetic biomass production at the surface for the last ~2,500 million years or more. By the time oxygenic photosynthesis evolved on Earth, Mars had been a hyperarid, frozen desert with a surface bombarded by high-energy solar and cosmic radiation for more than a billion years, and as a result, photosynthetic surface life may never have occurred on Mars. Therefore, one must question whether searching for evidence of life in Martian surface sediments is the best strategy. This Perspective explores the possibility that the abundant hydrothermal environments on Mars might provide more valuable insights into life’s origins.

  • Subscribe to Nature Geoscience for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Herd, C. D. K. et al. Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorite. Science 332, 1304–1307 (2011).

  2. 2.

    Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355–356, 144–151 (2012).

  3. 3.

    Sleep, N. H. & Zahnle, K. Refugia from asteroid impacts on early Mars and the early Earth. J. Geophys. Res. 103, 28529–28544 (1998).

  4. 4.

    Rosing, M. T. & Frei, R. U-rich Archaean sea-floor sediments from Greenland — indications of >3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217, 237–244 (2004).

  5. 5.

    Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996).

  6. 6.

    Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538 (2016).

  7. 7.

    Bell, E. A., Boehnke, P., Harrison, T. M. & Mao, W. L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl Acad. Sci. USA 112, 14518–14521 (2015).

  8. 8.

    Abramov, O. & Mojzsis, S. J. Thermal effects of impact bombardments on Noachian Mars. Earth Planet. Sci. Lett. 442, 108–120 (2016).

  9. 9.

    Miller, S. L. & Urey, H. C. Organic compound synthesis on the primitive earth. Science 130, 245–251 (1959).

  10. 10.

    Szostak, J. W. et al. Synthesizing life. Nature 409, 387–390 (2001).

  11. 11.

    Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

  12. 12.

    Oró, J. & Kimball, A. P. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 94, 217–227 (1961).

  13. 13.

    Ricardo, A., Carrigan, M. A., Olcott, A. N. & Benner, S. A. Borate minerals stabilize ribose. Science 303, 196 (2004).

  14. 14.

    Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).

  15. 15.

    Schmidt, B. E., Blankenship, D. D., Patterson, G. W. & Schenk, P. M. Active formation of ‘chaos terrain’ over shallow subsurface water on Europa. Nature 479, 502–505 (2011).

  16. 16.

    Patthoff, D. A. & Kattenhorn, S. A. A fracture history on Enceladus provides evidence for a global ocean. Geophys. Res. Lett. 38, L048387 (2011).

  17. 17.

    Vance, S. et al. Hydrothermal systems in small ocean planets. Astrobiology 7, 987–1005 (2007).

  18. 18.

    Russell, M. J. et al. The drive to life on wet and icy worlds. Astrobiology 14, 308–343 (2014).

  19. 19.

    Běhounková, M. et al. Timing of water plume eruptions on Enceladus explained by interior viscosity structure. Nat. Geosci. 8, 1–6 (2015).

  20. 20.

    Sparks, W. B. et al. Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829, 121 (2016).

  21. 21.

    Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y. & Koonin, E. V. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl Acad. Sci. USA 109, E821–E830 (2012).

  22. 22.

    Deamer, D. W. & Georgiou, C. D. Hydrothermal conditions and the origin of cellular life. Astrobiology 15, 1091–1095 (2015).

  23. 23.

    Golombek, M. P. et al. Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. 111, 1–14 (2006).

  24. 24.

    Zuber, M. T. The crust and mantle of Mars. Nature 412, 220–227 (2001).

  25. 25.

    Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S. & Frey, H. V. Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. 118, 1488–1511 (2013).

  26. 26.

    Kminek, G. & Bada, J. L. The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet. Sci. Lett. 245, 1–5 (2006).

  27. 27.

    Lammer, H. et al. Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013).

  28. 28.

    Carter, J., Poulet, F., Bibring, J. P., Mangold, N. & Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. 118, 831–858 (2013).

  29. 29.

    Carter, J., Loizeau, D., Mangold, N., Poulet, F. & Bibring, J. P. Widespread surface weathering on early Mars: a case for a warmer and wetter climate. Icarus 248, 373–382 (2014).

  30. 30.

    Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).

  31. 31.

    Ruff, S. W. & Farmer, J. D. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat. Commun. 7, 1–10 (2016).

  32. 32.

    Skok, J. R., Mustard, J. F., Ehlmann, B. L., Milliken, R. E. & Murchie, S. L. Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nat. Geosci. 3, 838–841 (2010).

  33. 33.

    Marzo, G. A. et al. Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 208, 667–683 (2010).

  34. 34.

    Turner, S. M. R., Bridges, J. C., Grebby, S. & Ehlmann, B. L. Hydrothermal activity recorded in post Noachian-aged impact craters on Mars. J. Geophys. Res. Planets 121, 608–625 (2016).

  35. 35.

    Cockell, C. S. et al. Habitability: a review. Astrobiology 16, 89–117 (2016).

  36. 36.

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

  37. 37.

    Onstott, T. C., Colwell, F. S., Kieft, T. L., Murdoch, L. & Phelps, T. J. New horizons for deep subsurface microbiology. Microbe 4, 499–505 (2009).

  38. 38.

    Stevens, T. O. & Mckinley, J. P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454 (1995).

  39. 39.

    Pedersen, K. Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20, 399–414 (1997).

  40. 40.

    Coveney, R. M., Goebel, E. D., Zeller, E. J., Dreschhoff, G. A. M. & Angino, E. E. Serpentinization and the origin of hydrogen gas in Kansas (USA). Am. Assoc. Petrol. Geologists Bull. 71, 39–48 (1987).

  41. 41.

    Lin, L.-H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479–82 (2006).

  42. 42.

    Michalski, J. R. et al. Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 6, 133–138 (2013).

  43. 43.

    Takai, K. et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).

  44. 44.

    Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307, 1428–1434 (2005).

  45. 45.

    Parnell, J., Boyce, A. J. & Blamey, N. J. F. Follow the methane: the search for a deep biosphere, and the case for sampling serpentinites, on Mars. Int. J. Astrobiol 9, 193–200 (2010).

  46. 46.

    Onstott, T. C. et al. Martian CH4: sources, flux, and detection. Astrobiology 6, 377–395 (2006).

  47. 47.

    Niles, P. B. et al. Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. 174, 301–328 (2013).

  48. 48.

    Russell, M. J., Hall, A. J. & Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 8, 355–371 (2010).

  49. 49.

    Dismukes, G. C. et al. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 98, 2170–5 (2001).

  50. 50.

    Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436–1440 (2017).

  51. 51.

    Shih, P. M., Hemp, J., Ward, L. M., Matzke, N. J. & Fischer, W. W. Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology 15, 19–29 (2017).

  52. 52.

    Johnson, J. E. et al. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl Acad. Sci. USA 110, 11238–11243 (2013).

  53. 53.

    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

  54. 54.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

  55. 55.

    Davila, A. F. & Schulze-Makuch, D. The last possible outposts for life on Mars. Astrobiology 16, 159–168 (2016).

  56. 56.

    Veizer, J. & Mackenzie, F. T. Treatise on Geochemistry: Second Edition 9 399–435, (Elsevier, Heinrich, 2013).

  57. 57.

    Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of ‘warm and wet’ and ‘cold and icy’ scenarios for early Mars in a 3-D climate model. J. Geophys. Res. 120, 1201–1219 (2015).

  58. 58.

    Wordsworth, R. et al. Global modelling of the early martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

  59. 59.

    De Villiers, G., Kleinhans, M. G. & Postma, G. Experimental delta formation in crater lakes and implications for interpretation of Martian deltas. J. Geophys. Res. 118, 651–670 (2013).

  60. 60.

    Fassett, C. I. & H., J. W. III Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 32, 1–5 (2005).

  61. 61.

    Fassett, C. I. & Head, J. W. Sequence and timing of conditions on early Mars. Icarus 211, 1204–1214 (2011).

  62. 62.

    Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol 1, 16170 (2016).

  63. 63.

    Dadachova, E. & Casadevall, A. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr. Opin. Microbiol. 11, 525–531 (2008).

  64. 64.

    Kato, K. et al. Microbial Mat Boundaries between chemolithotrophs and phototrophs in geothermal hot spring effluents. Geomicrobiol. J. 21, 91–98 (2004).

  65. 65.

    Pedersen, K. et al. Evidence of ancient life at 207 m depth in a granitic aquifer. Geology 25, 827–830 (1997).

  66. 66.

    Klein, F. et al. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin. Proc. Natl Acad. Sci. USA 112, 12036–41 (2015).

  67. 67.

    Ringelberg, D. B., Sutton, S. & White, D. C. Biomass, bioactivity and biodiversity: microbial ecology of the deep subsurface: analysis of ester-linked phospholipid fatty acids. FEMS Microbiol. Rev. 20, 371–377 (1997).

  68. 68.

    Ehrenfreund, P., Glavin, D. P., Botta, O., Cooper, G. & Bada, J. L. Extraterrestrial amino acids in Orgueil and Ivuna: tracing the parent body of CI type carbonaceous chondrites. Proc. Natl Acad. Sci. USA 98, 2138–2141 (2001).

  69. 69.

    Bada, J. L. & McDonald, G. D. Amino Acid Racemization on Mars: implications for the preservation of biomolecules from an extinct Martian biota. Icarus 114, 139–143 (1995).

  70. 70.

    Phoenix, V. R., Konhauser, K. O., Adams, D. G. & Bottrell, S. H. Role of biomineralization as an ultraviolet shield: implications for Archean life. Geology 29, 823–826 (2002).

  71. 71.

    Taylor, S. R. & McLennan, S. M. Planetary Crusts: Their Composition, Origin and Evolution (Cambridge University Press, Cambridge, 2009).

  72. 72.

    Poulet, F. et al. Martian surface mineralogy from Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activite on board the Mars Express spacecraft (OMEGA/MEx): global mineral maps. J. Geophys. Res. 112, E002840 (2007).

  73. 73.

    Murchie, S. et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112, E002682 (2007).

  74. 74.

    Michalski, J. R. & Niles, P. B. Deep crustal carbonate rocks exposed by meteor impact on Mars. Nat. Geosci. 3, 751–755 (2010).

  75. 75.

    Wray, J. J. et al. Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res. 121, 652–677 (2016).

  76. 76.

    Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L06201 (2010).

  77. 77.

    Squyres, S. W. et al. Detection of silica-rich deposits on Mars. Science 320, 1063–1067 (2008).

  78. 78.

    Michalski, J. R., Dobrea, E. Z. N., Niles, P. B. & Cuadros, J. Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat Commun. 8, 15978 (2017).

  79. 79.

    McGovern, P. J. et al. Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution. J. Geophys. Res. 107, 19–25 (2002).

Download references


We wish to acknowledge NASA for sponsoring open workshops surrounding the landing site selection for Mars rovers, and specifically the upcoming Mars 2020 rover mission. This work benefited from discussion during landing site selection meetings, as well as the NASA-sponsored conference on Biosignature Preservation and Detection in Mars Analog Environments held in Lake Tahoe in May of 2016 and the Rock Hosted Life Workshop held in February 2017 at the California Institute of Technology in Pasadena, CA.

Author information


  1. Department of Earth Sciences and Laboratory for Space Research, The University of Hong Kong, Pokfulam, Hong Kong, China

    • Joseph R. Michalski
  2. Department of Geosciences, Princeton University, Princeton, NJ, USA

    • Tullis C. Onstott
  3. Department of Geological Sciences, University of Colorado, Boulder, CO, USA

    • Stephen J. Mojzsis
  4. Collaborative for Research in Origins (CRiO), The John Templeton Foundation - FfAME Origins Program, Boulder, CO, USA

    • Stephen J. Mojzsis
  5. Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary

    • Stephen J. Mojzsis
  6. Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA

    • John Mustard
  7. Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, TX, USA

    • Queenie H. S. Chan
    •  & Paul B. Niles
  8. Department of Biology, Georgetown University, Washington, DC, USA

    • Sarah Stewart Johnson
  9. Science, Technology, and International Affairs Program, Georgetown University, Washington, DC, USA

    • Sarah Stewart Johnson


  1. Search for Joseph R. Michalski in:

  2. Search for Tullis C. Onstott in:

  3. Search for Stephen J. Mojzsis in:

  4. Search for John Mustard in:

  5. Search for Queenie H. S. Chan in:

  6. Search for Paul B. Niles in:

  7. Search for Sarah Stewart Johnson in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Joseph R. Michalski.