Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for a spike in mantle carbon outgassing during the Ediacaran period

Abstract

Long-term cycles in Earth’s climate are thought to be primarily controlled by changes in atmospheric CO2 concentrations. Changes in carbon emissions from volcanic activity can create an imbalance in the carbon cycle. Large-scale changes in volcanic activity have been inferred from proxies such as the age abundance of detrital zircons, but the magnitude of carbon emissions depends on the style of volcanism as well as the amount. Here we analyse U–Pb age and trace element data of detrital zircons from Antarctica and compare the results with the global rock record. We identify a spike in CO2-rich carbonatite and alkaline magmatism during the Ediacaran period. Before the Ediacaran, secular cooling of the mantle and the advent of cooler subduction regimes promoted the sequestration of carbon derived from decarbonation of subducting oceanic slabs in the mantle. We infer that subsequent magmatism led to the extensive release of carbon that may at least in part be recorded in the Shuram–Wonoka carbon isotope excursion. We therefore suggest that this pulse of alkaline volcanism reflects a profound reorganization of the Neoproterozoic deep and surface carbon cycles and promoted planetary warming before the Cambrian radiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Early Palaeozoic Gondwana reconstruction showing alkaline and carbonatite igneous complexes approximately 700–500 Ma.
Fig. 2: Cumulative PDPs and histograms.
Fig. 3: Neoproterozoic–Cambrian U–Pb detrital zircon age and chemostratigraphic data in context of tectonic, volcanic and Snowball Earth episodes.

References

  1. 1.

    Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75, 183–229 (2013).

    Article  Google Scholar 

  2. 2.

    Berner, R. Atmospheric carbon dioxide levels over Phanerozoic time. Science 249, 1382–1386 (1990).

    Article  Google Scholar 

  3. 3.

    Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

    Article  Google Scholar 

  4. 4.

    Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006).

    Article  Google Scholar 

  5. 5.

    McKenzie, N. R., Hughes, N. C., Gill, B. C. & Myrow, P. M. Plate tectonic influences on Neoproterozoic–early Paleozoic climate and animal evolution. Geology 42, 127–130 (2014).

    Article  Google Scholar 

  6. 6.

    McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).

    Article  Google Scholar 

  7. 7.

    Lee, C. T. A. et al. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere 9, 21–36 (2013).

    Article  Google Scholar 

  8. 8.

    Edmond, J. M. & Huh, Y. Non-steady state carbonate recycling and implications for the evolution of atmospheric \({p}_{{{\rm{CO}}}_{{\rm{2}}}}\). Earth Planet. Sci. Lett. 216, 125–139 (2003).

    Article  Google Scholar 

  9. 9.

    Caldeira, K. Enhanced Cenozoic chemical-weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992).

    Article  Google Scholar 

  10. 10.

    Kerrick, D. M. Present and past nonanthropogenic CO2 degassing from the solid earth. Rev. Geophys. 39, 565–585 (2001).

    Article  Google Scholar 

  11. 11.

    Santosh, M. & Omori, S. CO2 windows from mantle to atmosphere: models on ultrahigh-temperature metamorphism and speculations on the link with melting of snowball Earth. Gondwana Res. 14, 82–96 (2008).

    Article  Google Scholar 

  12. 12.

    Hammouda, T. & Keshav, S. Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites. Chem. Geol. 418, 171–188 (2015).

    Article  Google Scholar 

  13. 13.

    Rukhlov, A. S., Bell, K. & Amelin, Y. Carbonatites, isotopes and evolution of the subcontinental mantle: an overview. in Symp. Crit. Strateg. Mat. 39–64 (British Columbia Geological Survey Paper 2015–3, BC Geological Survey, 2015).

    Google Scholar 

  14. 14.

    Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

    Article  Google Scholar 

  15. 15.

    Bailey, D. K. & Hampton, C. M. Volatiles in alkaline magmatism. Lithos 26, 157–165 (1990).

    Article  Google Scholar 

  16. 16.

    Woolley, A. R. & Kemp, D. R. C. in Carbonatites: Genesis and Evolution (ed. Bell, K.) 1–14 (Unwin Hyman, London, 1989).

  17. 17.

    Hudgins, T. R., Mukasa, S. B., Simon, A. C., Moore, G. & Barifaijo, E. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: implications for long-term storage of volatiles in the deep lithospheric mantle. Contrib. Mineral. Petrol. 169, 1–18 (2015).

    Article  Google Scholar 

  18. 18.

    Goodge, J. W., Fanning, C. M., Norman, M. D. & Bennett, V. C. Temporal, isotopic and spatial relations of Early Paleozoic Gondwana-margin arc magmatism, Central Transantarctic Mountains, Antarctica. J. Petrol. 53, 2027–2065 (2012).

    Article  Google Scholar 

  19. 19.

    Hagen-Peter, G., Cottle, J. M., Smit, M. & Cooper, A. F. Coupled garnet Lu–Hf and monazite U–Pb geochronology constrain early convergent margin dynamics in the Ross orogen, Antarctica. J. Metamorph. Geol. 34, 293–319 (2016).

    Article  Google Scholar 

  20. 20.

    Paulsen, T. S., Deering, C., Sliwinski, J., Bachmann, O. & Guillong, M. A continental arc tempo discovered in the Pacific-Gondwana margin mudpile? Geology 44, 915–918 (2016).

    Article  Google Scholar 

  21. 21.

    Squire, R. J., Campbell, I. H., Allen, C. M. & Wilson, C. J. L. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth Planet. Sci. Lett. 250, 116–133 (2006).

    Article  Google Scholar 

  22. 22.

    Pilet, S., Baker, M. B. & Stolper, E. M. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916–919 (2008).

    Article  Google Scholar 

  23. 23.

    Belousova, E. A., Griffin, W. L., O’Reilly, S. Y. & Fisher, N. I. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 143, 602–622 (2002).

    Article  Google Scholar 

  24. 24.

    Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. The continental record and the generation of continental crust. Bull. Geol. Soc. Am. 125, 14–32 (2013).

    Article  Google Scholar 

  25. 25.

    Veevers, J. J. Pan-Gondwanaland post-collisional extension marked by 650–500 Ma alkaline rocks and carbonatites and related detrital zircons: a review. Earth Sci. Rev. 83, 1–47 (2007).

    Article  Google Scholar 

  26. 26.

    Woolley, A. R. & Bailey, D. K. The crucial role of lithospheric structure in the generation and release of carbonatites: geological evidence. Mineral. Mag. 76, 259–270 (2012).

    Article  Google Scholar 

  27. 27.

    Stern, R. J., Leybourne, M. I. & Tsujimori, T. Kimberlites and the start of plate tectonics. Geology 44, 1–4 (2016).

    Article  Google Scholar 

  28. 28.

    Bell, K. & Simonetti, A. Source of parental melts to carbonatites — critical isotopic constraints. Mineral. Petrol. 98, 77–89 (2010).

    Article  Google Scholar 

  29. 29.

    Hulett, S. R. W., Simonetti, A., Rasbury, E. T. & Hemming, N. G. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nat. Geosci. 9, 9–14 (2016).

    Article  Google Scholar 

  30. 30.

    Tsujimori, T. & Ernst, W. G. Lawsonite blueschists and lawsonite eclogites as proxies for palaeo-subduction zone processes: a review. J. Metamorph. Geol. 32, 437–454 (2014).

    Article  Google Scholar 

  31. 31.

    Liou, J. G., Tsujimori, T., Yang, J., Zhang, R. Y. & Ernst, W. G. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: a review. J. Asian Earth Sci. 96, 386–420 (2014).

    Article  Google Scholar 

  32. 32.

    Brown, M. Metamorphic conditions in orogenic belts: a record of secular change. Int. Geol. Rev. 49, 193–234 (2007).

    Article  Google Scholar 

  33. 33.

    Horton, F. Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? Geochem. Geophys. Geosyst. 16, 1723–1738 (2015).

    Article  Google Scholar 

  34. 34.

    Woolley, A. R. in Carbonatites: Genesis and Evolution 15–37 (Unwin Hyman, London, 1989).

    Google Scholar 

  35. 35.

    Hagen-Peter, G. & Cottle, J. M. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic–early Paleozoic Ross orogeny, Antarctica: insights into magmatic sources and processes within a continental arc. Lithos 262, 677–698 (2016).

    Article  Google Scholar 

  36. 36.

    Gernon, T. M., Hincks, T. K., Tyrrell, T., Rohling, E. J. & Palmer, M. R. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup. Nat. Geosci. 9, 242–248 (2016).

    Article  Google Scholar 

  37. 37.

    Doig, R. An alkaline rock province linking Europe and North America. Can. J. Earth Sci. 22, 22–28 (1970).

    Article  Google Scholar 

  38. 38.

    Tappe, S. et al. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton. J. Petrol. 47, 1261–1315 (2006).

    Article  Google Scholar 

  39. 39.

    Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543–8548 (2010).

    Article  Google Scholar 

  40. 40.

    Storey, M., Duncan, R. A. & Swisher, C. C. Paleocene-Eocene thermal maximum and the opening of the Northeast Atlantic. Science 316, 587–589 (2007).

    Article  Google Scholar 

  41. 41.

    Cox, G. M. et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth Planet. Sci. Lett. 446, 89–99 (2016).

    Article  Google Scholar 

  42. 42.

    Grotzinger, J. P., Fike, D. A. & Fischer, W. W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat. Geosci. 4, 285–292 (2011).

    Article  Google Scholar 

  43. 43.

    Husson, J. M., Maloof, A. C., Schoene, B., Chen, C. Y. & Higgins, J. A. Stratigraphic expression of Earth’s deepest δ13C excursion in the Wonoka Formation of South Australia. Am. J. Sci. 315, 1–45 (2015).

    Article  Google Scholar 

  44. 44.

    Derry, L. A. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. Earth Planet. Sci. Lett. 294, 152–162 (2010).

    Article  Google Scholar 

  45. 45.

    Lee, C., Love, G. D., Fischer, W. W., Grotzinger, J. P. & Halverson, G. P. Marine organic matter cycling during the Ediacaran Shuram excursion. Geology 43, 1103–1106 (2015).

    Article  Google Scholar 

  46. 46.

    Minguez, D. & Kodama, K. P. Rock magnetic chronostratigraphy of the Shuram carbon isotope excursion: Wonoka Formation, Australia. Geology 45, 567–570 (2017).

    Article  Google Scholar 

  47. 47.

    Deines, P. The carbon isotope geochemistry of mantle xenoliths. Earth Sci. Rev. 58, 247–278 (2002).

    Article  Google Scholar 

  48. 48.

    Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).

    Article  Google Scholar 

  49. 49.

    Pu, J. P. et al. Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44, 955–958 (2016).

    Article  Google Scholar 

  50. 50.

    Hall, C. E., Cooper, A. F. & Parkinson, D. L. Early Cambrian carbonatite in Antarctica. J. Geol. Soc. Lond. 152, 721–728 (1995).

  51. 51.

    Casquet, C. et al. A deformed alkaline igneous rock-carbonatite complex from the Western Sierras Pampeanas, Argentina: evidence for late Neoproterozoic opening of the Clymene Ocean? Precambr. Res. 165, 205–220 (2008).

  52. 52.

    Woolley, A. R. & Kjarsgaard, B. A. Carbonatite Occurrences of the World: Map and Database (Geological Survey of Canada, 2008); http://geopub.nrcan.gc.ca/moreinfo_e.php?id=225115&_h=Woolley.

  53. 53.

    Faure, S. World Kimberlites CONSOREM Database v. 2006–2 (Univ. Quebec at Montreal, 2006); https://consorem.uqac.ca/kimberlite/world_kimberlites_and_lamproites_consorem_database__v2010.x.

  54. 54.

    Voice, P. J., Kowalewski, M. & Eriksson, K. A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J. Geol. 119, 109–126 (2011).

    Article  Google Scholar 

  55. 55.

    Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).

    Article  Google Scholar 

  56. 56.

    Wiedenbeck, M. et al. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element, and REE analyses. Geostand. Newsl. 19, 1–23 (1995).

    Article  Google Scholar 

  57. 57.

    Sláma, J. et al. Plesovice zircon — a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).

    Article  Google Scholar 

  58. 58.

    Paton, C. et al. Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst.  11, Q0AA06 (2010).

    Article  Google Scholar 

  59. 59.

    Petrus, J. A. & Kamber, B. S. VizualAge: a novel approach to laser ablation ICP-MS U–Pb geochronology data reduction. Geostand. Geoanal. Res. 36, 247–270 (2012).

    Article  Google Scholar 

  60. 60.

    Paulsen, T. S., Deering, C., Sliwinski, J., Bachmann, O. & Guillong, M. Detrital zircon ages from the Ross Supergroup, north Victoria Land, Antarctica: implications for the tectonostratigraphic evolution of the Pacific-Gondwana margin. Gondwana Res. 35, 79–96 (2016).

    Google Scholar 

  61. 61.

    Paulsen, T., Deering, C., Sliwinski, J., Bachmann, O. & Guillong, M. New detrital zircon age and trace element evidence for 1450 Ma igneous zircon sources in East Antarctica. Precambrian Res. 300, 53–58 (2017).

    Article  Google Scholar 

  62. 62.

    Paulsen, T. et al. Detrital zircon ages and trace element compositions of Permian–Triassic foreland basin strata of the Gondwanide orogen, Antarctica. Geosphere 13, 1–9 (2017).

  63. 63.

    Guillong, M., Meier, D., Allan, M., Heinrich, C. & Yardley, B. SILLS: A MATLAB-based Program for the Reduction of Laser Ablation ICP-MS Data of Homogeneous Materials and Inclusions 328–333 (Short Course 40, Mineralogical Association of Canada, 2008).

  64. 64.

    Rubatto, D. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem. Geol. 184, 123–138 (2002).

    Article  Google Scholar 

  65. 65.

    Hoskin, P. W. O. & Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochemistry 53, 27–62 (2003).

    Article  Google Scholar 

  66. 66.

    Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochemistry 53, 469–500 (2003).

    Article  Google Scholar 

  67. 67.

    Gehrels, G. et al. U–Th–Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: constraints on age and tectonic evolution. Bull. Geol. Soc. Am. 121, 1341–1361 (2009).

    Article  Google Scholar 

  68. 68.

    Ludwig, K. R. User’s Manual for Isoplot 3.00 — A Geochronological Toolkit for Microsoft Excel Special Publication No. 4 (Berkeley Geochronology Center, Berkeley, 2003).

  69. 69.

    Gehrels, G. AGE PICK (2009); http://www.geo.arizona.edu/alc.

  70. 70.

    Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 36, 199–204 (2013).

  71. 71.

    Veevers, J. J., Belousova, E. A. & Saeed, A. Zircons traced from the 700–500 Ma Transgondwanan supermountains and the Gamburtsev subglacial mountains to the Ordovician Lachlan Orogen, Cretaceous Ceduna Delta, and modern Channel Country, central-southern Australia. Sediment. Geol. 334, 115–141 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This research used rock samples provided by the United States Polar Rock Repository and New Zealand PETLAB rock collections. The authors acknowledge support from NSF-0835480 to T.P., the UW Oshkosh EAA/CR Meyer and Penson Endowed Professorships and Faculty Development Program and the Scientific Center for Optical and Electron Microscopy ScopeM of the Swiss Federal Institute of Technology ETHZ. We thank E. Stump and G. Gehrels for zircons provided from four samples.

Author information

Affiliations

Authors

Contributions

T.P. and C.D. conceived the study. T.P. procured samples and mineral separates. J.S. conducted imaging, U–Pb age and trace element analyses. All authors participated in the interpretation of results and read and approved the final manuscript.

Corresponding author

Correspondence to Timothy Paulsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary information

Supplementary text and Figs. 1–4

Supplementary Table 1

Listing sample information and zircon U–Pb age and trace element results

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paulsen, T., Deering, C., Sliwinski, J. et al. Evidence for a spike in mantle carbon outgassing during the Ediacaran period. Nature Geosci 10, 930–934 (2017). https://doi.org/10.1038/s41561-017-0011-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing