Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Links between sediment consolidation and Cascadia megathrust slip behaviour


At sediment-rich subduction zones, megathrust slip behaviour and forearc deformation are tightly linked to the physical properties and in situ stresses within underthrust and accreted sediments. Yet the role of sediment consolidation at the onset of subduction in controlling the downdip evolution and along-strike variation in megathrust fault properties and accretionary wedge structure is poorly known. Here we use controlled-source seismic data combined with ocean drilling data to constrain the sediment consolidation and in situ stress state near the deformation front of the Cascadia subduction zone. Offshore Washington where the megathrust is inferred to be strongly locked, we find over-consolidated sediments near the deformation front that are incorporated into a strong outer wedge, with little sediment subducted. These conditions are favourable for strain accumulation on the megathrust and potential earthquake rupture close to the trench. In contrast, offshore Central Oregon, a thick under-consolidated sediment sequence is subducting, and is probably associated with elevated pore fluid pressures on the megathrust in a region where reduced locking is inferred. Our results suggest that the consolidation state of the sediments near the deformation front is a key factor contributing to megathrust slip behaviour and its along-strike variation, and it may also have a significant role in the deformation style of the accretionary wedge.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Palaeo-earthquake rupture segments and current megathrust locking status of the Cascadia subduction zone, and representative forearc structures offshore Washington and Central Oregon.
Fig. 2: Comparison of sediment consolidation and in situ stress state between the Washington transect (47.4° N) and the Oregon transect (44.6° N).
Fig. 3: Along-strike variation in sediment consolidation state in relation to underthrust sediment thickness and forearc structure from 44.3° N to 47.8° N.


  1. 1.

    Atwater, B. F. Evidence for great Holocene earthquakes along the outer coast of Washington-state. Science 236, 942–944 (1987).

    Article  Google Scholar 

  2. 2.

    Adams, J. Paleoseismicity of the Cascadia subduction zone: Evidence from turbidites off the Oregon-Washington margin. Tectonics 9, 569–583 (1990).

    Article  Google Scholar 

  3. 3.

    Goldfinger, C. et al. Turbidite Event History — Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone US Geological Survey Professional Paper 1661–F (USGS, 2012).

  4. 4.

    Satake, K., Wang, K. & Atwater, B. F. Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. J. Geophys. Res. 108, 2535 (2003).

    Article  Google Scholar 

  5. 5.

    Wang, K., Wells, R., Mazzotti, S., Hyndman, R. D. & Sagiya, T. A revised dislocation model of interseismic deformation of the Cascadia subduction zone. J. Geophys. Res. 108, 2026 (2003).

    Google Scholar 

  6. 6.

    Burgette, R. J., Weldon, R. J. & Schmidt, D. A. Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone. J. Geophys. Res. 114, B01408 (2009).

    Article  Google Scholar 

  7. 7.

    McCaffrey, R., King, R. W., Payne, S. J. & Lancaster, M. Active tectonics of northwestern US inferred from GPS-derived surface velocities. J. Geophys. Res. 118, 709–723 (2013).

    Article  Google Scholar 

  8. 8.

    Schmalzle, G. M., McCaffrey, R. & Creager, K. C. Central Cascadia subduction zone creep. Geochem. Geophys. Geosyst. 15, 1515–1532 (2014).

    Article  Google Scholar 

  9. 9.

    Mackay, M. E., Moore, G. F., Cochrane, G. R., Moore, J. C. & Kulm, L. D. Landward vergence and oblique structural trends in the oregon margin accretionary prism — implications and effect on fluid-flow. Earth Planet. Sci. Lett. 109, 477–491 (1992).

    Article  Google Scholar 

  10. 10.

    MacKay, M. E. Structural variation and landward vergence at the toe of the Oregon accretionary prism. Tectonics 14, 1309–1320 (1995).

    Article  Google Scholar 

  11. 11.

    Adam, J., Klaeschen, D., Kukowski, N. & Flueh, E. Upward delamination of Cascadia Basin sediment infill with landward frontal accretion thrusting caused by rapid glacial age material flux. Tectonics 23, (2004).

  12. 12.

    Booth-Rea, G., Klaeschen, D., Grevemeyer, I. & Reston, T. Heterogeneous deformation in the Cascadia convergent margin and its relation to thermal gradient (Washington, NW USA). Tectonics 27, TC4005 (2008).

    Article  Google Scholar 

  13. 13.

    Gulick, S. P. S., Meltzer, A. M. & Clarke, S. H. Seismic structure of the southern Cascadia subduction zone and accretionary prism north of the Mendocino triple junction. J. Geophys. Res. 103, 27207–27222 (1998).

    Article  Google Scholar 

  14. 14.

    Yuan, T., Spence, G. D. & Hyndman, R. D. Seismic velocities and inferred porosities in the accretionary wedge sediments at the Cascadia margin. J. Geophys. Res. 99, 4413–4427 (1994).

    Article  Google Scholar 

  15. 15.

    Cochrane, G. R., Moore, J. C., Mackay, M. E. & Moore, G. F. Velocity and inferred porosity model of the oregon accretionary prism from multichannel seismic-reflection data — implications on sediment dewatering and overpressure. J. Geophys. Res. 99, 7033–7043 (1994).

    Article  Google Scholar 

  16. 16.

    Cochrane, G. R., Moore, C. J. & Lee, H. J. In Subduction Top to Bottom (eds Bebout, G. E., Scholl, D. W., Kirby, S. H., & Platt, J. P.) 57-64 (American Geophysical Union, Washington, DC, 1996).

  17. 17.

    Carbotte, S. M. et al. Evolution and hydration of the Juan de Fuca crust and uppermost mantle: a plate-scale seismic investigation from ridge to trench. AGU Fall Meeting Abstracts 1, 01 (2012).

    Google Scholar 

  18. 18.

    Han, S. et al. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: new constraints on the distribution of faulting and evolution of the crust prior to subduction. J. Geophys. Res. 121, 1849–1872 (2016).

    Article  Google Scholar 

  19. 19.

    Saffer, D. M. & Bekins, B. A. An evaluation of factors influencing pore pressure in accretionary complexes: implications for taper angle and wedge mechanics. J. Geophys. Res. 111, B04101 (2006).

    Article  Google Scholar 

  20. 20.

    Saffer, D. M., Underwood, M. B. & McKiernan, A. W. Evaluation of factors controlling smectite transformation and fluid production in subduction zones: Application to the Nankai Trough. Isl. Arc 17, 208–230 (2008).

    Article  Google Scholar 

  21. 21.

    Moore, J. C., Moore, G. F., Cochrane, G. R. & Tobin, H. J. Negative-polarity seismic reflections along faults of the Oregon accretionary prism — indicators of overpressuring. J. Geophys. Res. 100, 12895–12906 (1995).

    Article  Google Scholar 

  22. 22.

    Davis, D., Suppe, J. & Dahlen, F. A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88, 1153–1172 (1983).

    Article  Google Scholar 

  23. 23.

    Saffer, D. M. & Tobin, H. J. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39, 157–186 (2011).

    Article  Google Scholar 

  24. 24.

    Saffer, D. M. & Wallace, L. M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nat. Geosci. 8, 594–600 (2015).

    Article  Google Scholar 

  25. 25.

    Wannamaker, P. E. et al. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochem. Geophys. Geosyst. 15, 4230–4253 (2014).

    Article  Google Scholar 

  26. 26.

    Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Article  Google Scholar 

  27. 27.

    Kodaira, S. et al. High pore fluid pressure may cause silent slip in the Nankai Trough. Science 304, 1295–1298 (2004).

    Article  Google Scholar 

  28. 28.

    Wallace, L. M. et al. Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. Geochem. Geophys. Geosyst. 10, Q10006 (2009).

    Google Scholar 

  29. 29.

    Eberhart-Phillips, D., Reyners, M., Chadwick, M. & Chiu, J.-M. Crustal heterogeneity and subduction processes: 3-D Vp, Vp/Vs and Q in the southern North Island, New Zealand. Geophys. J. Int. 162, 270–288 (2005).

    Article  Google Scholar 

  30. 30.

    Heise, W. et al. Changes in electrical resistivity track changes in tectonic plate coupling. Geophys. Res. Lett. 40, 5029–5033 (2013).

    Article  Google Scholar 

  31. 31.

    Dean, S. M. et al. Contrasting decollement and prism properties over the Sumatra 2004–2005 earthquake rupture boundary. Science 329, 207–210 (2010).

    Article  Google Scholar 

  32. 32.

    Gulick, S. P. S. et al. Updip rupture of the 2004 Sumatra earthquake extended by thick indurated sediments. Nat. Geosci. 4, 453–456 (2011).

    Article  Google Scholar 

  33. 33.

    Henstock, T. J., McNeill, L. C. & Tappin, D. R. Seafloor morphology of the Sumatran subduction zone: surface rupture during megathrust earthquakes? Geology 34, 485–488 (2006).

    Article  Google Scholar 

  34. 34.

    Hüpers, A. et al. Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra. Science 356, 841–844 (2017).

    Article  Google Scholar 

  35. 35.

    Pichon, X. L., Henry, P. & Lallemant, S. Accretion and erosion in subduction zones: the role of fluids. Annu. Rev. Earth Planet. Sci. 21, 307–331 (1993).

    Article  Google Scholar 

  36. 36.

    Tréhu, A. M., Blakely, R. J. & Williams, M. C. Subducted seamounts and recent earthquakes beneath the central Cascadia forearc. Geology 40, 103–106 (2012).

    Article  Google Scholar 

  37. 37.

    Goldfinger, C., Kulm, L. D., McNeill, L. C. & Watts, P. Super-scale failure of the southern Oregon Cascadia margin. Pure Appl. Geophys. 157, 1189–1226 (2000).

    Article  Google Scholar 

  38. 38.

    Morgan, J. K. & Bangs, N. L. Recognizing seamount-forearc collisions at accretionary margins: insights from discrete numerical simulations. Geology 45, 635–638 (2017).

    Article  Google Scholar 

  39. 39.

    Bell, R. et al. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophys. J. Int. 180, 34–48 (2010).

    Article  Google Scholar 

  40. 40.

    Gutscher, M.-A., Klaeschen, D., Flueh, E. & Malavieille, J. Non-Coulomb wedges, wrong-way thrusting, and natural hazards in Cascadia. Geology 29, 379–382 (2001).

    Article  Google Scholar 

  41. 41.

    Cubas, N., Souloumiac, P. & Singh, S. C. Relationship link between landward vergence in accretionary prisms and tsunami generation. Geology 44, 787–790 (2016).

    Article  Google Scholar 

  42. 42.

    Zhou, J., Zhang, B. & Xu, Q. Effects of lateral friction on the structural evolution of fold-and-thrust belts: insights from sandbox experiments with implications for the origin of landward-vergent thrust wedges in Cascadia. Geol. Soc. Am. Bull. 128, 669–683 (2016).

    Article  Google Scholar 

  43. 43.

    McNeill, L. C. & Henstock, T. J. Forearc structure and morphology along the Sumatra–Andaman subduction zone. Tectonics 33, 112–134 (2014).

    Article  Google Scholar 

  44. 44.

    Ikari, M. J., Saffer, D. M. & Marone, C. Effect of hydration state on the frictional properties of montmorillonite-based fault gouge. J. Geophys. Res. 112, B06423 (2007).

    Article  Google Scholar 

  45. 45.

    Kulm, L. D. & von Huene, R. et al. Initial Reports of the Deep Sea Drilling Project Volume 18 (US Government Printing Office, Washington DC, 1973). 

    Book  Google Scholar 

  46. 46.

    Westbrook, G. K., Carson, B. & Musgrave, R. J. et al. Cascadia margin sites 888–892In Proc. ODP Sci. Res. (Ocean Drilling Program, Texas, 1994); 

  47. 47.

    Davis, E. E. et al. Hydrothermal circulation in the oceanic crust: eastern flank of the Juan de Fuca Ridge: sites 1023–1032. In ODP Sci. Res. Vol. 168 (Ocean Drilling Program, Texas, 1997);

  48. 48.

    Minshull, T. & White, R. Sediment compaction and fluid migration in the Makran accretionary prism. J. Geophys. Res. 94, 7387–7402 (1989).

    Article  Google Scholar 

  49. 49.

    Qin, Y. & Singh, S. C. Detailed seismic velocity of the incoming subducting sediments in the 2004 great Sumatra earthquake rupture zone from full waveform inversion of long offset seismic data. Geophys. Res. Lett. 44, 3090–3099 (2017).

    Article  Google Scholar 

  50. 50.

    Arnulf, A. F. Structure and physical characteristics of the Southern Hikurangi Subduction Zone derived from seismic full waveform imaging. Seismol. Res. Lett. 88, 656 (2017)

  51. 51.

    Christeson, G. L. et al. The Yakutat terrane: dramatic change in crustal thickness across the Transition fault, Alaska. Geology 38, 895–898 (2010).

    Article  Google Scholar 

  52. 52.

    Süss, M. P. & Shaw, J. H. P wave seismic velocity structure derived from sonic logs and industry reflection data in the Los Angeles basin, California. J. Geophys. Res. 108, 2170 (2003).

    Article  Google Scholar 

  53. 53.

    Smith, G., McNeill, L., Henstock, T. J. & Bull, J. The structure and fault activity of the Makran accretionary prism. J. Geophys. Res. 117, B07407 (2012).

    Google Scholar 

  54. 54.

    Underwood, M. B. Strike-parallel variations in clay minerals and fault vergence in the Cascadia subduction zone. Geology 30, 155–158 (2002).

    Article  Google Scholar 

  55. 55.

    Underwood, M. B. et al. Provenance, stratigraphic architecture, and hydrogeologic influence of turbidites on the mid-ocean ridge flank of northwestern Cascadia Basin, Pacific Ocean. J. Sediment. Res. 75, 149–164 (2005).

    Article  Google Scholar 

  56. 56.

    Tobin, H. J. & Saffer, D. M. Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 37, 679–682 (2009).

    Article  Google Scholar 

  57. 57.

    Skarbek, R. M. & Saffer, D. M. Pore pressure development beneath the decollement at the Nankai subduction zone: implications for plate boundary fault strength and sediment dewatering. J. Geophys. Res. 114, B07401 (2009).

    Article  Google Scholar 

  58. 58.

    Hyndman, R. D., Moore, G. F. & Moran, K. Velocity, porosity, and pore-fluid loss from the Nankai subduction zone accretionary prism. In Proc. ODP Sci. Res. (eds Hill, I. A. et al.) Vol. 131, 211–220 (Ocean Drilling Program, Texas, 1993);

  59. 59.

    Erickson, S. N. & Jarrard, R. D. Velocity-porosity relationships for water-saturated siliciclastic sediments. J. Geophys. Res. 103, 30385–30406 (1998).

    Article  Google Scholar 

  60. 60.

    Hoffman, N. W. & Tobin, H. J. An empirical relationship between velocity and porosity for underthrust sediments in the Nankai Trough accretionary prism. In Proc. ODP Sci. Res. Vol. 190/196 (Ocean Drilling Program, Texas, 2004);

  61. 61.

    Karig, D. E. & Hou, G. High-stress consolidation experiments and their geologic implications. J. Geophys. Res. 97, 289–300 (1992).

    Article  Google Scholar 

  62. 62.

    Wood, D. M. Soil Behaviour and Critical State Soil Mechanics (Cambridge Univ. Press, Cambridge, 1990).

  63. 63.

    Kitajima, H. & Saffer, D. M. Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust. Geophys. Res. Lett. 39, L23301 (2012).

    Article  Google Scholar 

Download references


We thank the captain, crew and technical staff of R/V Marcus G. Langseth for their efforts, which made the success of cruise MGL1211 possible. Seismic data processing and interpretation was conducted using the Paradigm processing software packages Echos and Geodepth. We thank A. Arnulf for providing the velocity profile from the Hikurangi margin. This research was supported by the National Science Foundation through a GeoPRISMS Postdoctoral Fellowship (Award 1457221) to S.H. and Award 1029411 to S.M.C.

Author information




S.H. participated in the data collection and processed the seismic data. S.M.C. conceived of the project and led the data collection. S.H., N.L.B. and S.M.C interpreted the seismic data. S.H. and D.M.S. conducted the porosity and effective stress analysis. J.C.G. participated in the data collection and provided the starting models for velocity analysis. S.H. wrote the paper with contributions and edits from all other authors.

Corresponding author

Correspondence to Shuoshuo Han.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information 

Supplementary data and analyses to support the proposed links between sediment consolidation and Cascadia megathrust slip behaviour

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, S., Bangs, N.L., Carbotte, S.M. et al. Links between sediment consolidation and Cascadia megathrust slip behaviour. Nature Geosci 10, 954–959 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing