Article | Published:

Oxygenation as a driver of the Great Ordovician Biodiversification Event

Nature Geosciencevolume 10pages925929 (2017) | Download Citation


The largest radiation of Phanerozoic marine animal life quadrupled genus-level diversity towards the end of the Ordovician Period about 450 million years ago. A leading hypothesis for this Great Ordovician Biodiversification Event is that cooling of the Ordovician climate lowered sea surface temperatures into the thermal tolerance window of many animal groups, such as corals. A complementary role for oxygenation of subsurface environments has been inferred based on the increasing abundance of skeletal carbonate, but direct constraints on atmospheric O2 levels remain elusive. Here, we use high-resolution paired bulk carbonate and organic carbon isotope records to determine the changes in isotopic fractionation between these phases throughout the Ordovician radiation. These results can be used to reconstruct atmospheric O2 levels based on the O2-dependent fractionation of carbon isotopes by photosynthesis. We find a strong temporal link between the Great Ordovician Biodiversification Event and rising O2 concentrations, a pattern that is corroborated by O2 models that use traditional carbon–sulfur mass balance. We conclude that that oxygen levels probably played an important role in regulating early Palaeozoic biodiversity levels, even after the Cambrian Explosion.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Sepkoski, J. J. J. The Ordovician radiations: diversification and extinction shown by global genus-level taxonomic data. In Ordovician Odyssey Short Papers for the Seventh Int. Symp. on the Ordovician System 393–396 (SEPM, 1995).

  2. 2.

    Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G. The Great Ordovician Biodiversification Event (Columbia Univ. Press, 2004).

  3. 3.

    Servais, T., Owen, A. W., Harper, D. A. T., Kröger, B. & Munnecke, A. The Great Ordovician Biodiversification Event (GOBE): The palaeoecological dimension. Palaeogeogr. Palaeoclimatol. Palaeoecol. 294, 99–119 (2010).

  4. 4.

    Miller, A. I. in Earth and Life (ed. Talent, J. A.) 381–394 (Springer, 2012).

  5. 5.

    Harper, D. A. T., Zhan, R.-B. & Jin, J. The Great Ordovician Biodiversification Event: Reviewing two decades of research on diversity’s big bang illustrated by mainly brachiopod data. Palaeoworld 24, 75–85 (2015).

  6. 6.

    Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C. & Nicoll, R. S. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321, 550–554 (2008).

  7. 7.

    Pruss, S. B., Finnegan, S., Fischer, W. W. & Knoll, A. H. Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia. Palaios 25, 73–84 (2010).

  8. 8.

    Berner, R. A., VandenBrooks, J. M. & Ward, P. D. Oxygen and evolution. Science 316, 557–558 (2007).

  9. 9.

    Saltzman, M. R., Edwards, C. T., Adrain, J. M. & Westrop, S. R. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology 43, 807–810 (2015).

  10. 10.

    Droser, M. L. & Bottjer, D. J. Trends and patterns of Phanerozoic ichnofabrics. Annu. Rev. Earth Planet. Sci. 21, 205–225 (1993).

  11. 11.

    Sperling, E. A. et al. Oxygen, ecology, and the Cambrian radiation of animals. Proc. Natl Acad. Sci. USA 110, 13446–51 (2013).

  12. 12.

    Swanson-Hysell, N. L. & Macdonald, F. A. Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology 45, 719–725 (2017).

  13. 13.

    Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 (2016).

  14. 14.

    Poulsen, C. J., Tabor, C. & White, J. D. Atmospheric oxygen concentrations. Science 348, 1238–1242 (2015).

  15. 15.

    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: A new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

  16. 16.

    Berner, R. A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

  17. 17.

    Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009).

  18. 18.

    Algeo, T. J. & Ingall, E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 130–155 (2007).

  19. 19.

    Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).

  20. 20.

    Berner, R. A. et al. Isotope fractionation and atmospheric oxygen: Implications for phanerozoic O2 evolution. Science 287, 1630–1633 (2000).

  21. 21.

    Bidigare, R. R. et al. Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Glob. Biogeochem. Cycles 11, 279–292 (1997).

  22. 22.

    Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998).

  23. 23.

    Edwards, C. T. & Saltzman, M. R. Paired carbon isotopic analysis of Ordovician bulk carbonate (δ13Ccarb) and organic matter (δ13Corg) spanning the Great Ordovician Biodiversification Event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 458, 102–117 (2016).

  24. 24.

    Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6, 185–198 (1992).

  25. 25.

    Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999).

  26. 26.

    Pancost, R. D. et al. Reconstructing Late Ordovician carbon cycle variations. Geochim. Cosmochim. Acta 105, 433–454 (2013).

  27. 27.

    Joachimski, M. M., Pancost, R. D., Freeman, K. H., Ostertag-Henning, C. & Buggisch, W. Carbon isotope geochemistry of the Frasnian–Famennian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181, 91–109 (2002).

  28. 28.

    Pancost, R. D., Freeman, K. H. & Wakeham, S. G. Controls on the carbon-isotope compositions of compounds in Peru surface waters. Org. Geochem. 30, 319–340 (1999).

  29. 29.

    Pope, M. C. & Steffen, J. B. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: a proxy record of glaciation? Geology 31, 63–66 (2003).

  30. 30.

    Servais, T. et al. The onset of the “Ordovician Plankton Revolution” in the late Cambrian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 458, 12–28 (2016).

  31. 31.

    Naafs, B. D. A. et al. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nat. Geosci. 135–139 (2016).

  32. 32.

    Berner, R. A. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci. 306, 295–302 (2006).

  33. 33.

    Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Goddéris, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).

  34. 34.

    Beerling, D. J. et al. The influence of Carboniferous palaeo-atmospheres on plant function: an experimental and modelling assessment. Phil. Trans. R. Soc. B 353, 131–140 (1998).

  35. 35.

    Henderiks, J. & Pagani, M. Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth Planet. Sci. Lett. 269, 575–583 (2008).

  36. 36.

    Melchin, M. J., Mitchell, C. E., Holmden, C. & Štorch, P. Environmental changes in the Late Ordovician–early Silurian: Review and new insights from black shales and nitrogen isotopes. Geol. Soc. Am. Bull. 125, 1635–1670 (2013).

  37. 37.

    Jones, D. S. & Fike, D. A. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate–pyrite δ34S. Earth Planet. Sci. Lett. 363, 144–155 (2013).

  38. 38.

    Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374–397 (2014).

  39. 39.

    Harper, D. A. T. et al. Biodiversity, biogeography and phylogeography of Ordovician rhynchonelliform brachiopods. Mem. Geol. Soc. Lond. 38, 127–144 (2013).

  40. 40.

    Trubovitz, S. & Stigall, A. L. Synchronous diversification of Laurentian and Baltic rhynchonelliform brachiopods: Implications for regional versus global triggers of the Great Ordovician Biodiversification Event. Geology 44, 743–746 (2016).

  41. 41.

    Graham, J. B., Dudley, R., Aguilar, N. M. & Gans, C. Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375, 117–120 (1995).

  42. 42.

    Young, S. A., Saltzman, M. R., Ausich, W. I., Desrochers, A. & Kaljo, D. Did changes in atmospheric CO2 coincide with latest Ordovician glacial-interglacial cycles? Palaeogeogr. Palaeoclimatol. Palaeoecol. 296, 376–388 (2010).

  43. 43.

    Jones, D. S. et al. Terminal Ordovician carbon isotope stratigraphy and glacioeustatic sea-level change across Anticosti Island (Québec, Canada). Geol. Soc. Am. Bull. 123, 1645–1664 (2011).

  44. 44.

    Rohrssen, M., Love, G. D., Fischer, W., Finnegan, S. & Fike, D. A. Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnantian glaciation. Geology 41, 127–130 (2013).

  45. 45.

    Brenchley, P. J., Carden, G. A. F. & Marshall, J. D. Environmental changes assoicated with the “first strike” of the Late Ordovician mass extinction. Mod. Geol. 20, 69–82 (1995).

  46. 46.

    Pohl, A., Donnadieu, Y., Le Hir, G. & Ferreira, D. The climatic significance of Late Ordovician-early Silurian black shales. Paleoceanography 32, 397–423 (2017).

  47. 56.

    Kampschulte, A. & Strauss, H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol. 204, 255–286 (2004).

  48. 57.

    Saltzman, M. R. et al. Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution. Bull. Geol. Soc. Am. 126, 1551–1568 (2014).

  49. 47.

    Bergström, S.  M., Young, S. & Schmitz, B. Katian (Upper Ordovician) δ13C chemostratigraphy and sequence stratigraphy in the United States and Baltoscandia: A regional comparison. Palaeogeogr. Palaeoclimatol. Palaeoecol. 296, 217–234 (2010).

  50. 48.

    Gouldey, J.  C., Saltzman, M.  R., Young, S.  A. & Kaljo, D. Strontium and carbon isotope stratigraphy of the Llandovery (Early Silurian): Implications for tectonics and weathering. Palaeogeogr. Palaeoclimatol. Palaeoecol. 296, 264–275 (2010).

  51. 49.

    Laporte, D.  F. et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 182–195 (2009).

  52. 50.

    Young, S.  A., Saltzman, M.  R., Bergström, S.  M., Leslie, S.  A. & Xu, C. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian–Katian) carbonates in North America and China: Implications for paleoceanographic change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 270, 166–178 (2008).

  53. 51.

    Buggisch, W., Keller, M. & Lehnert, O. Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 195, 357–373 (2003).

  54. 52.

    Azmy, K. & Lavoie, D. High-resolution isotope stratigraphy of the Lower Ordovician St. George Group of western Newfoundland, Canada: Implications for global correlation. Can. J. Earth Sci. 423, 403–423 (2009).

  55. 53.

    Pancost, R.  D., Freeman, K.  H. & Patzkowsky, M.  E. Organic-matter source variation and the expression of a late Middle Ordovician carbon isotope excursion. Geology 27, 1015–1018 (1999).

  56. 54.

    Metzger, J.  G. & Fike, D.  A. Techniques for assessing spatial heterogeneity of carbonate δ13C values: Implications for craton-wide isotope gradients. Sedimentology 60, 1405–1431 (2013).

  57. 55.

    Edwards, C. T. Carbon, Sulfur, and Strontium Isotope Stratigraphy of the Lower-Middle Ordovician, Great Basin, USA: Implications for Oxygenation andCauses of Global Biodiversification. PhD thesis, Ohio State Univ. (2014).

Download references


J. Houghton is thanked for valuable discussions in improving earlier versions of this paper. This paper is a contribution to IGCP Projects 591 and 653. Funding was provided in part by the Evolving Earth Foundation (CTE), a Geological Society of America Graduate Student Research Grant (CTE), a Paleontological Society Student Research Grant (CTE) and NSF Grants EAR-0819832 and EAR-0745452 (M.R.S.).

Author information


  1. Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA

    • Cole T. Edwards
  2. School of Earth Sciences, The Ohio State University, Columbus, OH, USA

    • Matthew R. Saltzman
  3. Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT, USA

    • Dana L. Royer
  4. Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA

    • David A. Fike


  1. Search for Cole T. Edwards in:

  2. Search for Matthew R. Saltzman in:

  3. Search for Dana L. Royer in:

  4. Search for David A. Fike in:


This project was conceived by C.T.E. and M.R.S. with input from D.L.R. and D.A.F. Isotopic data preparation and analysis was done by C.T.E. Modelling was conducted by C.T.E. with input from D.L.R. The manuscript was developed by C.T.E. and received equal contributions from all authors on editing the final manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Cole T. Edwards.

Electronic supplementary material

  1. Supplementary Information

    Supplementary discussion and figures

  2. Supplementary Table 1

    Binned isotope data used for GEOCARB and model results of O2 and CO2

  3. Supplementary Table 2

    Isotope data and atmospheric O2 using the photosynthetic fractionation effect approach

  4. Supplementary Table 3

    New δ13C and δ34S data used in the photosynthetic fractionation effect and GEOCARB models

  5. Supplementary Table 4

    Taxonomic data used to construct the biodiversity curve

About this article

Publication history




Issue Date


Further reading