Perspective | Published:

Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic

Nature Geosciencevolume 10pages891896 (2017) | Download Citation

Abstract

The doldrums — a zone of calm and variable winds in the deep tropics between the trades — were of key importance to nineteenth century maritime travel. As a result, the region was a focus in atmospheric science at that time. However, as sailing ships were replaced by steamboats, scientific interest shifted to the heavy precipitating storms within the doldrums: the deep convective systems of the intertropical convergence zone. Now, in storm-system-resolving simulations over a period of two months that cover a large part of the tropical Atlantic, the doldrums are one of the most prominent features. The doldrums are substantially less pronounced in coarser-resolution simulations that use a parameterization for convection, despite their large-scale extent. We conclude that explicitly representing the storm scale dynamics and their coupling to the surface wind on the storm-system scales helps to maintain the systems of winds that define the doldrums. We suggest that the lack of these wind systems could explain the persistent tropical precipitation biases in climate models.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Halley, E. An historical account of the trade winds, and monsoons, observable in the seas between and near the tropicks, with an attempt to assign the phisical cause of the said wind. Philos. Trans. R. Soc. 183, 153–168 (1686).

  2. 2.

    Oxford English Dictionary (Oxford University Press, Oxford, 2017); http://go.nature.com/2zAudNh

  3. 3.

    Hutcheson, J. C. On Board the “Esmeralda” (Cassell & Company Ltd, London, 1885).

  4. 4.

    Findlay, A. G. A Directory for the North Atlantic Oean, Comprising Instructions, General and Particular, for its Navitation 16th edn (Imray, Laurie, Norie & Wilson Ltd, London, 1918).

  5. 5.

    Xie, S. P. & Philander, S. A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46, 340–350 (1994).

  6. 6.

    Bony, S. et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 8, 261–268 (2015).

  7. 7.

    Maury, M. F. The Physical Geography of the Sea and its Meteorology 11th edn (Sampson Low, Son & Co., 1864).

  8. 8.

    Seewarte, D. Segelhandbücher für den Atlantischen Ozean (Friederichsen und Co., Hamburg, 1885).

  9. 9.

    Brooks, C & Braby, H. W. The clash of the trades in the Pacific. Quart. J. R. Meteorol. Soc. 197, 1–11 (1921).

  10. 10.

    Palmer, C. E. in Compendium of Meteorology (ed. Malone, T. F.) 859–880 (American Meteorological Society, Boston, 1951).

  11. 11.

    Riehl, H. & Malkus, J. S. On the heat balance in the equatorial trough zone. Geophysica 6, 503–538 (1958).

  12. 12.

    Slingo, A. & Slingo, J. M. The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. R. Meteorol. Soc. 114, 1027–1062 (1988).

  13. 13.

    Randall, D. A., Harshvardhan, Dazlich, D. A. & Corsetti, T. G. Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci. 46, 1943–1970 (1989).

  14. 14.

    Cane, M. A., Zebiak, S. E. & Dolan, S. C. Experimental forecasts of El Niño. Nature 321, 827–832 (1986).

  15. 15.

    Lindzen, R. S. & Nigam, S. On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics. J. Atmos. Sci. 44, 2418–2436 (1987).

  16. 16.

    Mitchell, T. P. & Wallace, J. M. The annual cycle in equatorial convection and sea surface temperature. J. Clim. 5, 1140–1156 (1992).

  17. 17.

    Xie, S.-P. in The Hadley Circulation: Present, Past and Future (eds Diaz, H. F. & Bradley, R. S.) 121–152 (Springer Netherlands, Dordrecht, 2004).

  18. 18.

    Dunn, G. E. Cyclogenesis in the tropical Atlantic. Bull. Am. Meteorol. Soc. 21, 215–229 (1940).

  19. 19.

    Dunkerton, T. J., Montgomery, M. T. & Wang, Z. Tropical cyclogenesis in a tropical wave critical layer: easterly waves. Atmos. Chem. Phys. 9, 5587–5646 (2009).

  20. 20.

    Weimerskirch, H., Bishop, C., Jeanniard-du Dot, T., Prudor, A. & Sachs, G. Frigate birds track atmospheric conditions over months-long transoceanic flights. Science 353, 74–78 (2016).

  21. 21.

    Richter, I., Xie, S.-P., Behera, S., Doi, T. & Masumoto, Y. Equatorial atlantic variability and its relation to mean state biases in CMIP5. Clim. Dyn. 42, 171–188 (2014).

  22. 22.

    Biasutti, M., Sobel, A. H. & Kushnir, Y. AGCM precipitation biases in the tropical atlantic. J. Clim. 19, 935–958 (2006).

  23. 23.

    Siongco, A. C., Hohenegger, C. & Stevens, B. The atlantic ITCZ bias in CMIP5 models. Clim. Dyn. 45, 1169–1180 (2015).

  24. 24.

    Bryan, G. H., Wyngaard, J. C. & Fritsch, J. M. Resolution requirements for the simulation of deep moist convection. Mon Weather Rev. 131, 2394–2416 (2003).

  25. 25.

    I. Orlanski. A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 56, 527–530 (1975).

  26. 26.

    Zipser, E. J. Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon Weather Rev. 105, 1568–1589 (1977).

  27. 27.

    Houze, R. A. & Betts, A. K. Convection in GATE. Rev. Geophys. 19, 541–576 (1981).

  28. 28.

    Stevens, B. et al. The Barbados cloud observatory: anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Am. Meteorol. Soc. 97, 787–801 (2016).

  29. 29.

    Marsham, J. H. et al. The role of moist convection in the west african monsoon system: insights from continental-scale convection-permitting simulations. Geophys. Res. Lett. 40, 1843–1849 (2013).

  30. 30.

    Arakawa, A. The cumulus parameterization problem: past, present, and future. J. Clim. 17, 2493–2525 (2004).

  31. 31.

    Ferreira, R. N. & Schubert, W. H. Barotropic Aspects of ITCZ Breakdown. J. Atmos. Sci. 54, 261–285 (1997).

  32. 32.

    Nolan, D. S., Tulich, S. N. & Blanco, J. E. ITCZ structure as determined by parameterized versus explicit convection in aquachannel and aquapatch simulations. J. Adv. Model. Earth Syst. 8, 425–452 (2016).

  33. 33.

    Hohenegger, C. & Stevens, B. Coupled radiative convective equilibrium simulations with explicit and parameterized convection. J. Adv. Model. Earth Syst. 8, 1468–1482 (2016).

  34. 34.

    Sawyer, S. A. Memorandum on the Intertropical Front (Meteorological Office, 1952).

  35. 35.

    Richter, I., Xie, S.-P., Wittenberg, A. T. & Masumoto, Y. Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Clim. Dyn. 38, 985–1001 (2011).

  36. 36.

    Williamson, D. L. Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3. Tellus A 60, 848–862 (2016).

  37. 37.

    Houze, R. A. Jr Mesoscale convective systems. Rev. Geophys. 42, 86 (2004).

  38. 38.

    Biasutti, M., Sobel, A. H. & Kushnir, Y. AGCM precipitation biases in the tropical Atlantic. J. Clim. 19, 935–958 (2006).

  39. 39.

    Siongco, A. C., Hohenegger, C. & Stevens, B. Sensitivity of the summertime tropical atlantic precipitation distribution to convective parameterization and model resolution in ECHAM6. J. Geophys. Res. Atmos. 122, 2579–2594 (2017).

  40. 40.

    Crowe, P. The trade wind circulation of the world. Trans. Inst. Br. Geogr. 15, 39–56 (1949).

  41. 41.

    Crowe, P. Wind and weather in the equatorial zone. Trans. Inst. Br. Geogr. 17, 23–76 (1951).

  42. 42.

    Maury, M. F. Wind and Current Charts 6th edn (E. C. and J. Biddle, Philadelphia, 1854).

  43. 43.

    Emanuel, K. A. An air–sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sci. 43, 585–605 (1986).

  44. 44.

    Klepp, C., Ament, F., Bakan, S., Hirsch, L, & Stevens, B. NARVAL Campaign Report (Max Planck Institute for Meteorology, Hamburg, 2015).

  45. 45.

    Zängl, G., Reinert, D., Rpodas, P. & Baldauf, M. The ICON (icosahedral non-hydrostatic) modelling framework of DWD and MPI-M: description of the non-hydrostatic dynamical core. Quart. J. R. Meteorol. Soc. 141, 563–579 (2015).

  46. 46.

    Dipankar, A. et al.  Large eddy simulation using the general circulation model ICON. J. Adv. Model. Earth Syst. 7, 963–986 (2015).

  47. 47.

    Heinze, R. et al. Large-eddy simulations over Germany using ICON: a comprehensive evaluation. Quart. J.R. Meteorol. Soc. 143, 69–100 (2017).

  48. 48.

    Baldauf, M. et al. Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev. 139, 3887–3905 (2011).

  49. 49.

    Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. & Clough, S. A. Radiative transfer for inhomogeneous atmospheres: Rrtm, a validated correlated-k model for the longwave. J. Geophy. Res. Atmos. 102, 16663–16682 (1997).

  50. 50.

    Stevens, B. et al. Atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146–172 (2013).

  51. 51.

    Wodzicki, K. & Rapp, A. Long-term characterization of the pacific ITCZ using TRMM, GPCP, and ERA-Interim. J. Geophy. Res. Atmos. 121, 3153–3170 (2016).

Download references

Acknowledgements

This research was carried out in the Hans Ertel Center for Weather Research (HErZ). This German research network of universities, research institutions and the German Weather Service (DWD) is funded by the BMVI (Federal Ministry of Transport and Digital Infrastructure). M.B. is partly supported by the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) project funded by the German Ministry for Education and Research (01LK1501B). The simulations were conducted on the super computer system of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the simulation data is stored at the the German Climate Computing Center (DKRZ). The authors are very grateful to the librarians at DWD for their support with the historic literature.

Author information

Affiliations

  1. Deutscher Wetterdienst, Offenbach, Germany

    • Daniel Klocke
  2. Hans-Ertel-Zentrum für Wetterforschung, Offenbach, Germany

    • Daniel Klocke
  3. Max-Planck-Institut für Meteorologie, Hamburg, Germany

    • Matthias Brueck
    • , Cathy Hohenegger
    •  & Bjorn Stevens

Authors

  1. Search for Daniel Klocke in:

  2. Search for Matthias Brueck in:

  3. Search for Cathy Hohenegger in:

  4. Search for Bjorn Stevens in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Daniel Klocke.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-017-0005-4

Further reading