Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Potential links between continental rifting, CO2 degassing and climate change through time


The concentration of CO2 in the atmosphere is a key influence on Earth’s climate. Today, significant quantities of CO2 are emitted at continental rifts, suggesting that the spatial and temporal extent of rift systems may have influenced deep carbon fluxes and thus climate change throughout geological time. Here we test this hypothesis by conducting a worldwide census of continental rift lengths over the last 200 million years. We estimate tectonic CO2 release rates through time and show that along the extensive Mesozoic and Cenozoic rift systems, rift-related CO2 degassing rates reached more than 300% of present-day values. Using a numerical carbon cycle model, we find that two prominent periods of enhanced rifting 160 to 100 million years ago and after 55 million years ago coincided with greenhouse climate episodes, during which atmospheric CO2 concentrations were more than three times higher than today. We therefore propose that continental fragmentation and long-term climate change could plausibly be linked via massive CO2 degassing in rift systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Timing and location of continental rifting.
Fig. 2: Cumulative rift length through time.
Fig. 3: Rift controls on palaeo–atmospheric CO2 levels.
Fig. 4: Effect of rifts, ridges, subduction zones and continental arcs.


  1. 1.

    Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    Article  Google Scholar 

  2. 2.

    Kerrick, D. M. Present and past nonanthropogenic CO2 degassing from the solid Earth. Rev. Geophys. 39, 565–585 (2001).

    Article  Google Scholar 

  3. 3.

    Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. Planets 106, 1373–1399 (2001).

    Article  Google Scholar 

  4. 4.

    Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Goddéris, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).

    Article  Google Scholar 

  5. 5.

    Lee, C.-T. A. et al. Continental arc–island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere 9, 21–36 (2013).

    Article  Google Scholar 

  6. 6.

    Hoareau, G. et al. Did high Neo-Tethys subduction rates contribute to early Cenozoic warming? Clim. Past 11, 1751–1767 (2015).

    Article  Google Scholar 

  7. 7.

    van der Meer, D. G. et al. Plate tectonic controls on atmospheric CO2 levels since the Triassic. Proc. Natl Acad. Sci. USA 111, 4380–4385 (2014).

    Article  Google Scholar 

  8. 8.

    Jagoutz, O., Macdonald, F. A. & Royden, L. Low-latitude arc–continent collision as a driver for global cooling. Proc. Natl Acad. Sci. USA 113, 4935–4940 (2016).

  9. 9.

    Li, M. et al. Quantifying melt production and degassing rate at mid-ocean ridges from global mantle convection models with plate motion history. Geochem. Geophys. Geosyst. 17, 2884–2904 (2016).

    Article  Google Scholar 

  10. 10.

    Alt, J. C. & Teagle, D. A. H. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

    Article  Google Scholar 

  11. 11.

    Gillis, K. M. & Coogan, L. A. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302, 385–392 (2011).

    Article  Google Scholar 

  12. 12.

    Müller, R. D., Dutkiewicz, A., Seton, M. & Gaina, C. Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology 41, 907–910 (2013).

    Article  Google Scholar 

  13. 13.

    Lee, H. et al. Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 9, 145–149 (2016).

    Article  Google Scholar 

  14. 14.

    Weinlich, F. H. et al. An active subcontinental mantle volatile system in the western Eger rift, Central Europe: gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim. Cosmochim. Acta 63, 3653–3671 (1999).

    Article  Google Scholar 

  15. 15.

    Chiodini, G. et al. Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth Planet. Sci. Lett. 274, 372–379 (2008).

    Article  Google Scholar 

  16. 16.

    Dasgupta, R. & Hirschmann, M. M. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440, 659–662 (2006).

    Article  Google Scholar 

  17. 17.

    Sleep, N. H. Stagnant lid convection and carbonate metasomatism of the deep continental lithosphere. Geochem. Geophys. Geosyst. 10, Q11010 (2009).

    Google Scholar 

  18. 18.

    Rooney, T. O., Nelson, W. R., Dosso, L., Furman, T. & Hanan, B. The role of continental lithosphere metasomes in the production of HIMU-like magmatism on the northeast African and Arabian plates. Geology 42, 419–422 (2014).

    Article  Google Scholar 

  19. 19.

    Foley, S. F. & Fischer, T. P. The essential role of continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. (2017).

  20. 20.

    Hutchison, W., Mather, T. A., Pyle, D. M., Biggs, J. & Yirgu, G. Structural controls on fluid pathways in an active rift system: a case study of the Aluto volcanic complex. Geosphere 11, 542–562 (2015).

    Article  Google Scholar 

  21. 21.

    Jolie, E., Klinkmueller, M., Moeck, I. & Bruhn, D. Linking gas fluxes at Earth’s surface with fracture zones in an active geothermal field. Geology 44, 187–190 (2016).

    Article  Google Scholar 

  22. 22.

    Muirhead, J. D. et al. Evolution of upper crustal faulting assisted by magmatic volatile release during early-stage continental rift development in the East African Rift. Geosphere 12, 1670–1700 (2016).

    Article  Google Scholar 

  23. 23.

    Ibs-von Seht, M., Plenefisch, T. & Klinge, K. Earthquake swarms in continental rifts — a comparison of selected cases in America, Africa and Europe. Tectonophysics 452, 66–77 (2008).

    Article  Google Scholar 

  24. 24.

    Kennedy, B. M. et al. Mantle fluids in the San Andreas Fault System, California. Science 278, 1278–1281 (1997).

    Article  Google Scholar 

  25. 25.

    Ring, U. et al. Recent mantle degassing recorded by carbonic spring deposits along sinistral strike-slip faults, south-central Australia. Earth Planet. Sci. Lett. 454, 304–318 (2016).

    Article  Google Scholar 

  26. 26.

    Smith, J. CO 2 Flux Along Faults of the Central Rio Grande Rift, New Mexico. MSc thesis, Univ. New Mexico (2016).

  27. 27.

    Lindenfeld, M., Rümpker, G., Link, K., Koehn, D. & Batte, A. Fluid-triggered earthquake swarms in the Rwenzori region, East African Rift—evidence for rift initiation. Tectonophysics 566–567, 95–104 (2012).

    Article  Google Scholar 

  28. 28.

    Barry, P. H. et al. Helium and carbon isotope systematics of cold ‘mazuku’ CO2 vents and hydrothermal gases and fluids from Rungwe Volcanic Province, southern Tanzania. Chem. Geol. 339, 141–156 (2013).

    Article  Google Scholar 

  29. 29.

    Seward, T. M. & Kerrick, D. M. Hydrothermal CO2 emission from the Taupo Volcanic Zone, New Zealand. Earth Planet. Sci. Lett. 139, 105–113 (1996).

    Article  Google Scholar 

  30. 30.

    Frondini, F. et al. Carbon dioxide degassing from Tuscany and Northern Latium (Italy). Glob. Planet. Change 61, 89–102 (2008).

    Article  Google Scholar 

  31. 31.

    Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016).

    Article  Google Scholar 

  32. 32.

    Brune, S., Williams, S. E., Butterworth, N. P. & Müller, R. D. Abrupt plate accelerations shape rifted continental margins. Nature 536, 201–204 (2016).

    Article  Google Scholar 

  33. 33.

    Şengör, A. M. C. & Natal’in, B. A. Rifts of the world. Geol. Soc. Am. Spec. Pap. 352, 389–482 (2001).

    Google Scholar 

  34. 34.

    Kagoshima, T. et al. Sulphur geodynamic cycle. Sci. Rep. 5, 8330 (2015).

  35. 35.

    Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015).

    Article  Google Scholar 

  36. 36.

    Berner, R. A. The rise of plants and their effect on weathering and atmospheric CO2. Science 276, 544–546 (1997).

    Article  Google Scholar 

  37. 37.

    Zeebe, R. E. & Caldeira, K. Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nat. Geosci. 1, 312–315 (2008).

    Article  Google Scholar 

  38. 38.

    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    Article  Google Scholar 

  39. 39.

    Friedrich, O., Norris, R. D. & Erbacher, J. Evolution of middle to Late Cretaceous oceans—a 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40, 107–110 (2012).

    Article  Google Scholar 

  40. 40.

    Zachos, J. C. & Kump, L. R. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Glob. Planet. Change 47, 51–66 (2005).

    Article  Google Scholar 

  41. 41.

    Kent, D. V. & Muttoni, G. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt. Clim. Past 9, 525–546 (2013).

    Article  Google Scholar 

  42. 42.

    Lefebvre, V., Donnadieu, Y., Goddéris, Y., Fluteau, F. & Hubert-Théou, L. Was the Antarctic glaciation delayed by a high degassing rate during the early Cenozoic? Earth Planet. Sci. Lett. 371, 203–211 (2013).

    Article  Google Scholar 

  43. 43.

    Elsworth, G., Galbraith, E., Halverson, G. & Yang, S. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nat. Geosci. 10, 213–216 (2017).

    Article  Google Scholar 

  44. 44.

    Ernst, R. E. Large Igneous Provinces. (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  45. 45.

    Dessert, C. et al. Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet. Sci. Lett. 188, 459–474 (2001).

    Article  Google Scholar 

  46. 46.

    Cao, W., Lee, C.-T. A. & Lackey, J. S. Episodic nature of continental arc activity since 750 Ma: a global compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).

    Article  Google Scholar 

  47. 47.

    Ebinger, C. & Scholz, C. A. in Tectonics of Sedimentary Basins (eds Busby, C. & Azor, A.) 183–208 (John Wiley & Sons, Chichester, 2011).

  48. 48.

    Lee, H. et al. Incipient rifting accompanied by the release of subcontinental lithospheric mantle volatiles in the Magadi and Natron basin, East Africa. J. Volcanol. Geotherm. Res. (in the press, 2017).

  49. 49.

    McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse–greenhouse variability. Science 352, 444–447 (2016).

    Article  Google Scholar 

  50. 50.

    Mills, B., Daines, S. J. & Lenton, T. M. Changing tectonic controls on the long-term carbon cycle from Mesozoic to present. Geochem. Geophys. Geosyst. 15, 4866–4884 (2014).

    Article  Google Scholar 

  51. 51.

    Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Article  Google Scholar 

  52. 52.

    Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A. & Meert, J. A. ‘Snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 428, 303–306 (2004).

    Article  Google Scholar 

  53. 53.

    Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. & Nardin, E. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Sci. Rev. 128, 122–138 (2014).

    Article  Google Scholar 

  54. 54.

    Fischer, T. P. Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem. J. 42, 21–38 (2008).

    Article  Google Scholar 

  55. 55.

    Williams, S. E., Whittaker, J. M. & Müller, R. D. Full-fit, palinspastic reconstruction of the conjugate Australian-Antarctic margins. Tectonics 30, TC6012 (2011).

    Article  Google Scholar 

  56. 56.

    Kneller, E. A., Johnson, C. A., Karner, G. D., Einhorn, J. & Queffelec, T. A. Inverse methods for modeling non-rigid plate kinematics: Application to mesozoic plate reconstructions of the Central Atlantic. Comput. Geosci. 49, 217–230 (2012).

    Article  Google Scholar 

  57. 57.

    Heine, C., Zoethout, J. & Müller, R. D. Kinematics of the South Atlantic rift. Solid Earth 4, 215–253 (2013).

    Article  Google Scholar 

  58. 58.

    Hosseinpour, M., Müller, R. D., Williams, S. E. & Whittaker, J. M. Full-fit reconstruction of the Labrador Sea and Baffin Bay. Solid Earth 4, 461–479 (2013).

    Article  Google Scholar 

  59. 59.

    Barnett-Moore, N., Müller, D. R., Williams, S., Skogseid, J. & Seton, M. A reconstruction of the North Atlantic since the earliest Jurassic. Basin Res. (in the press, 2016).

  60. 60.

    Klimke, J. & Franke, D. Gondwana breakup: no evidence for a Davie Fracture Zone offshore northern Mozambique, Tanzania and Kenya. Terra Nova 28, 233–244 (2016).

    Article  Google Scholar 

  61. 61.

    Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, 18–36 (2008).

    Article  Google Scholar 

  62. 62.

    Autin, J. et al. Continental break-up history of a deep magma-poor margin based on seismic reflection data (northeastern Gulf of Aden margin, offshore Oman). Geophys. J. Int 180, 501–519 (2010).

    Article  Google Scholar 

  63. 63.

    Fournier, M. et al. Arabia-Somalia plate kinematics, evolution of the Aden-Owen-Carlsberg triple junction, and opening of the Gulf of Aden. J. Geophys. Res. 115, B04102 (2010).

  64. 64.

    Eagles, G. & König, M. A model of plate kinematics in Gondwana breakup. Geophys. J. Int 173, 703–717 (2008).

    Article  Google Scholar 

  65. 65.

    Reeves, C. The position of Madagascar within Gondwana and its movements during Gondwana dispersal. J. Afr. Earth Sci. 94, 45–57 (2014).

    Article  Google Scholar 

  66. 66.

    Berner, R. A. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci 306, 295–302 (2006).

    Article  Google Scholar 

  67. 67.

    Berner, R. A. Addendum to ‘Inclusion of the Weathering of Volcanic Rocks in the GEOCARBSULF Model’ (R. A. Berner, 2006, V. 306, p. 295–302). Am. J. Sci. 308, 100–103 (2008).

    Article  Google Scholar 

  68. 68.

    Berner, R. A. The Phanerozoic Carbon Cycle: CO 2 and O 2 . (Oxford University Press, Oxford, 2004).

    Google Scholar 

  69. 69.

    Berner, R. A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    Article  Google Scholar 

  70. 70.

    Bird, P., Kagan, Y. Y. & Jackson, D. D. in Plate Boundary Zones (eds Stein, S. & Freymueller, J. T.) 203–218 (American Geophysical Union, Washington, D. C., 2002).

  71. 71.

    Zahirovic, S., Müller, R. D., Seton, M. & Flament, N. Tectonic speed limits from plate kinematic reconstructions. Earth Planet. Sci. Lett. 418, 40–52 (2015).

    Article  Google Scholar 

  72. 72.

    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

Download references


We thank D. Royer for publicly sharing the R script of GEOCARBSULF and R. Ernst for kindly providing the data on large igneous provinces. This research has been funded by the German Academic Exchange Service (DAAD), Project 57319603. S.B. was supported through the Helmholtz Young Investigators Group CRYSTALS (VH-NG-1132). S.E.W. and R.D.M were supported by Australian Research Council grant IH130200012.

Author information




S.B. and S.E.W. developed the analytical workflow. S.B. conducted the numerical models. S.B., S.E.W. and R.D.M. discussed and integrated the results. The manuscript was written by S.B. with contributions from all authors.

Corresponding author

Correspondence to Sascha Brune.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Video

Plate boundary evolution since 200 Myr ago. This animation depicts the location of rifts, ridges, and subduction zones through time, based on the Müller et al. (2016) plate reconstruction. The time-dependent global length of these plate boundaries is shown in Fig. 4a

Supplementary Dataset

Geological rift record. The geological rift record, based on the rift database of Sengör & Natal'in (2001). See Methods for more information

Supplementary Figure

Overview map with rift identification. Rift locations according to the rift database of Sengör & Natal'in (2001). Circle size is proportional to rift length and circle colour is taken as the mid-point between rift initiation and the end of rift activity

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brune, S., Williams, S.E. & Müller, R.D. Potential links between continental rifting, CO2 degassing and climate change through time. Nature Geosci 10, 941–946 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing