Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An essential role for continental rifts and lithosphere in the deep carbon cycle


The continental lithosphere is a vast store for carbon. The carbon has been added and reactivated by episodic freezing and re-melting throughout geological history. Carbon remobilization can lead to significant variations in CO2 outgassing and release in the form of magmas from the continental lithosphere over geological timescales. Here we use calculations of continental lithospheric carbon storage, enrichment and remobilization to demonstrate that the role for continental lithosphere and rifts in Earth’s deep carbon budget has been severely underestimated. We estimate that cratonic lithosphere, which formed 2 to 3 billion years ago, originally contained about 0.25 Mt C km–3. A further 14 to 28 Mt C km–3 is added over time from the convecting mantle and about 43 Mt C km–3 is added by plume activity. Re-melting focuses carbon beneath rifts, creating zones with about 150 to 240 Mt C km–3, explaining the well-known association of carbonate-rich magmatic rocks with rifts. Reactivation of these zones can release 28 to 34 Mt of carbon per year for the 40 million year lifetime of a continental rift. During past episodes of supercontinent breakup, the greater abundance of continental rifts could have led to short-term carbon release of at least 142 to 170 Mt of carbon per year, and may have contributed to the high atmospheric CO2 at several times in Earth's history.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The global deep carbon cycle on the modern Earth.
Fig. 2: Schematic relationship of carbon-rich magmatism with rift tips and flanks.
Fig. 3: Carbon storage and reactivation in cratonic lithosphere and rifts.
Fig. 4: Carbon mobilization and storage in the lower lithosphere by incipient melts.


  1. 1.

    Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    Article  Google Scholar 

  2. 2.

    Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75, 183–229 (2013).

    Article  Google Scholar 

  3. 3.

    Kelemen, P. B. & Manning, C. R. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015).

    Article  Google Scholar 

  4. 4.

    Kagoshima, T. et al. Sulfur geodynamic cycle. Sci. Rep 5, 8330 (2015).

    Article  Google Scholar 

  5. 5.

    Lee, H. et al. Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 9, 145–149 (2016).

    Article  Google Scholar 

  6. 6.

    Caracausi, A., Patermoster, M. & Nuccio, P. M. Mantle CO2 degassing at Mt. Vulture volcano (Italy): relationship between CO2 outgassing of volcanoes and the time of their last eruption. Earth Planet. Sci. Lett. 411, 268–280 (2015).

    Article  Google Scholar 

  7. 7.

    Chiodini, G. et al. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys Res. Lett. 31, L07615 (2004).

    Article  Google Scholar 

  8. 8.

    Lewicki, J. L. & Brantley, S. L. CO2 degassing along the San Andreas fault, Parkfield, California. Geophys. Res. Lett. 27, 5–8 (2000).

    Article  Google Scholar 

  9. 9.

    Inguaggiato, C., Censi, P., D’Alessandro, W. & Zuddas, P. Geochemical characterization of gases along the Dead Sea rift: evidences of mantle-CO2 degassing. J. Volc. Geotherm. Res 320, 50–57 (2016).

    Article  Google Scholar 

  10. 10.

    Mutlu, H., Güleç, N. & Hilton, D. R. Helium–carbon relationships in geothermal fluids of western Anatolia, Turkey. Chem. Geol. 247, 305–321 (2008).

    Article  Google Scholar 

  11. 11.

    Angelier, J., Bergerat, F., Dauteull, O. & Villemin, T. Effective tension–shear relationships in extensional fissures swarms, axial rift zone of northeastern Iceland. J. Struct. Geol. 19, 673–685 (1997).

    Article  Google Scholar 

  12. 12.

    Ebinger, C. & Scholz, C. A. C in Tectonics of Sedmimentary Basins: Recent Advances (Bubsy, C. & Perez, A. A.) 185–208 (Wiley-Blackwell, Chichester, 2012)

  13. 13.

    Burton, M. R., Sawyer, G. M. & Granieri, D. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354 (2013).

    Article  Google Scholar 

  14. 14.

    Hutchison, W. et al. Causes of unrest at silicic calderas in the East African Rift: new constraints from InSAR and soil-gas chemistry at Aluto volcano, Ethiopia. Geochem. Geophys. Geosyst. 17, 3008–3030 (2016).

    Article  Google Scholar 

  15. 15.

    Robertson, E. et al. Diffuse degassing at Longonot volcao, Kenya: implications for CO2 flux in continental rifts. J. Volc. Geotherm. Res. 327, 208–222 (2016)

  16. 16.

    Woolley, A. R. in Carbonatites: Genesis and Evolution (ed. Bell, K.) 15–37 (Unwin-Hyman, London, 1989).

  17. 17.

    Foley, S. F., Link, K., Tiberindwa, J. V. & Barifaijo, E. Patterns and origin of igneous activity around the Tanzanian craton. J. Afr. Earth Sci. 62, 1–18 (2012).

    Article  Google Scholar 

  18. 18.

    Fischer, T. P. et al. Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature 459, 77–80 (2009).

    Article  Google Scholar 

  19. 19.

    Kjarsgaard, B. A. & Peterson, T. Nephelinite–carbonatite immiscibility at Shombole volcano, East Africa — petrographic and experimental evidence. Mineral. Petrol. 43, 293–314 (1991).

    Article  Google Scholar 

  20. 20.

    Gudfinnsson, G. H. & Presnall, D. C. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J. Petrol. 46, 1645–1659 (2005).

    Article  Google Scholar 

  21. 21.

    Foley, S. F. et al. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O at 40–60 kbar. Lithos 112S, 274–283 (2009).

    Article  Google Scholar 

  22. 22.

    Woolley, A. R. & Kjarsagaard, B. A. Carbonatite occurrences of the world: map and database. J. Petrol. 50, 195–196 (2008).

    Google Scholar 

  23. 23.

    Tappe, S. et al. Craton reactivation on the Labrador Sea mergins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet. Sci. Lett. 256, 433–456 (2007).

    Article  Google Scholar 

  24. 24.

    Larsen, L. M., Rex, D. C. & Secher, K. The age of carbonatites, kimberlites and lamprophyres from southern West Greenland: recurrent alkaline magmatism during 2500 million years. Lithos 16, 215–221 (1983).

    Article  Google Scholar 

  25. 25.

    Boyd, F. R. & Gurney, J. J. Diamonds and the African lithosphere. Science 272, 472–477 (1986).

    Article  Google Scholar 

  26. 26.

    Williams, L. A. J. in Continental and Oceanic Rifts (ed Pàlmason, G.) 193–222 (American Geophysical Union, 1978).

  27. 27.

    Rogers, N. W., James, D., Kelley, S. P. & de Mulder, M. The generation of potassic lavas from the eastern Virunga province, Rwanda. J. Petrol. 39, 1223–1247 (1998).

    Article  Google Scholar 

  28. 28.

    Tappe, S. et al. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. J. Petrol. 47, 1261–1315 (2006).

    Google Scholar 

  29. 29.

    Rosenthal, A., Foley, S. F., Pearson, D. G., Nowell, G. M. & Tappe, S. Magmatic evolution at the propagating tip of a continental rift — a geochemical study of primitive alkaline volcanic rocks of the western branch of the East African Rift. Earth Planet. Sci. Lett. 284, 236–248 (2009).

    Article  Google Scholar 

  30. 30.

    Foley, S. F. Rejuvenation and erosion of the cratonic lithosphere. Nat. Geosci. 1, 503–510 (2008).

    Article  Google Scholar 

  31. 31.

    Lee, C.-T. A. Geochemical/petrologic constraints on the origin of cratonic mantle. Geophys. Monog. Ser. 164, 89–114 (2006).

    Google Scholar 

  32. 32.

    Sleep, N. H. Stagnant lid convection and carbonate metasomatism of the deep continental lithosphere. Geochem. Geophy. Geosyst. 10, Q11010 (2009).

    Google Scholar 

  33. 33.

    Sobolev, S. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Article  Google Scholar 

  34. 34.

    Dasgupta, D., Hirschmann, M. M. & Withers, A. C. Deep global recycling of carbon constrained by the solidus of anhydrous carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227, 73–85 (2004).

    Article  Google Scholar 

  35. 35.

    Navon, O. Diamond formation in the Earth’s mantle. Proc. 7th Int. Kimberlite Conf. (Red Roof Design, Cape Town, 1999).

    Google Scholar 

  36. 36.

    Foley, S. F. A review and assessment of experiments on kimberlites, lamproites and lamprophyres as a guide to their origin. Proc. Indian Acad. Sci. 99, 57–80 (1990).

    Google Scholar 

  37. 37.

    Konzett, J., Armstrong, R. A. & Gunther, D. Mantle metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U–Pb zircon dating of metasomatized peridotites and MARID-type xenoliths. Contrib. Mineral. Petrol. 139, 704–719 (2000).

    Article  Google Scholar 

  38. 38.

    Foley, S. F. A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J. Petrol. 52, 1363–1391 (2011).

    Article  Google Scholar 

  39. 39.

    Rohrbach, A. & Schmidt, M. W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472, 209–212 (2011).

    Article  Google Scholar 

  40. 40.

    Griffin, W. L., O’Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009).

    Article  Google Scholar 

  41. 41.

    Woodland, A. B., Kornprobst, J., McPherson, E., Bodinier, J. L. & Menzies, M. A. Metasomatic interactions in the lithospheric mantle: petrologic evidence from the Lherz massif, French Pyrenees. Chem. Geol. 134, 83–112 (1996).

    Article  Google Scholar 

  42. 42.

    Yaxley, G. M., Berry, A. J., Rosenthal, A., Woodland, A. B. & Paterson, D. Redox preconditioning deep cratonic lithosphere for kimberlite genesis — evidence from the central Slave Craton. Sci. Rep. 7, 30 (2017).

    Article  Google Scholar 

  43. 43.

    Francis, D. & Patterson, M. Kimberlites and aillikites as probes of the continental lithopsheric mantle. Lithos 109, 72–80 (2009).

    Article  Google Scholar 

  44. 44.

    Elkins-Tanton, L. T. & Hager, B. H. Melt intrusion as a trigger for lithospheric foundering and the eruption of Siberian flood basalts. Geophys. Res. Lett. 27, 3937–3940 (2000).

    Article  Google Scholar 

  45. 45.

    Svensen, H. et al. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett. 256, 554–566 (2007).

    Article  Google Scholar 

  46. 46.

    Ganino, C. & Arndt, N. T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–326 (2009).

    Article  Google Scholar 

  47. 47.

    Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490–500 (2009).

    Article  Google Scholar 

  48. 48.

    Brune, S., Williams, S. E. & Müller, R. D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. (2017).

  49. 49.

    Li, M. et al. Quantifying melt production and degassing rate at mid-ocean ridges from global mantle convection models with plate motion history. Geochem. Geophys. Geosyst. 17, 2884–2904 (2016).

    Article  Google Scholar 

  50. 50.

    Eby, G., Lloyd, F. E. & Woolley, A. R. Geochemistry and petrogenesis of the Fort Portal, Uganda, extrusive carbonatite. Lithos 113, 785–800 (2009).

    Article  Google Scholar 

  51. 51.

    Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth Planet. Sci. Lett. 248, 518–532 (2006).

    Article  Google Scholar 

  52. 52.

    Hawkesworth, C. J. & Kemp, A. I. S. Evolution of the continental crust. Nature 443, 811–817 (2006).

    Article  Google Scholar 

  53. 53.

    Artemieva, I. M. & Mooney, W. D. Thermal thickness and evolution of Precambrian lithosphere: a global study. J. Geophys. Res. 106, 16387–16414 (2001).

    Article  Google Scholar 

  54. 54.

    Jaupart, C. & Mareschal, J. C. The thermal structure and thickness of continental roots. Lithos 48, 93–114 (1999).

    Article  Google Scholar 

  55. 55.

    Köhler, T. & Brey, G. P. Geothermobarometry in 4-phase lherzolites. 2. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31, 1353–1378 (1990).

    Article  Google Scholar 

  56. 56.

    Cogley, J. G. Continental margins and the extent and number of the continents. Rev. Geophys. 22, 101–122 (1984).

    Article  Google Scholar 

  57. 57.

    Pearson, D. G. The age of continental roots. Lithos 48, 171–194 (1999).

    Article  Google Scholar 

  58. 58.

    Rollinson, H. R. Early Earth Systems: A Geochemical Approach (Wiley, London, 2007).

  59. 59.

    Jacob, D. E. Nature and origin of eclogite xenoliths from kimberlites. Lithos 77, 295–316 (2004).

    Article  Google Scholar 

  60. 60.

    Shirey, S. B. & Richardson, S. H. Start of the Wilson Cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436 (2011).

    Article  Google Scholar 

  61. 61.

    Ireland, T. R., Rudnick, R. L. & Spetius, Z. Trace-elements in diamond inclusions from eclogites reveal link to Archean granites. Earth Planet. Sci. Lett. 128, 199–213 (1994).

    Article  Google Scholar 

  62. 62.

    Yaxley, G. M. & Green, D. H. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet. Sci. Lett. 128, 313–325 (1994).

    Article  Google Scholar 

  63. 63.

    Tsuno, K. & Dasgupta, R. The effect of carbonates on near-solidus melting of pelite at 3 GPa: relative efficiency of H2O and CO2 subduction. Earth Planet. Sci. Lett. 319–320, 185–196 (2012).

    Article  Google Scholar 

  64. 64.

    Van Hunen, J. & Moyen, J.-F. Archean subduction: fact or fiction? Ann. Rev. Earth Planet. Sci. 40, 195–219 (2012).

    Article  Google Scholar 

  65. 65.

    Hargraves, R. B. Faster spreading or greater ridge length in the Archean? Geology 14, 750–752 (1986).

    Article  Google Scholar 

  66. 66.

    Marschall, H. R. & Schumacher, J. C. Arc magmas sourced in melange diapirs in subduction zones. Nat. Geosci. 5, 862–867 (2012).

    Article  Google Scholar 

  67. 67.

    Chen, C. et al. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones. Geology 44, 1039–1042 (2016).

    Article  Google Scholar 

  68. 68.

    Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Article  Google Scholar 

  69. 69.

    Cartigny, P., Pineau, F., Aubaud, C. & Javoy, M. Towards a consistent mantle carbon flux estimate: insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14 °N and 34 °N). Earth Planet. Sci. Lett. 265, 672–685 (2008).

    Article  Google Scholar 

  70. 70.

    Hirschmann, M. M. & Dasgupta, R. The H/C ratios of earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).

    Article  Google Scholar 

  71. 71.

    Dasgupta, R. & Hirschmann, M. M. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440, 659–662 (2006).

    Article  Google Scholar 

  72. 72.

    McKenzie, D. The extraction of magma from the crust and mantle. Earth Planet. Sci. Lett. 74, 81–91 (1985).

    Article  Google Scholar 

  73. 73.

    Sleep, N. H. Tapping of melts by veins and dykes. J. Geophys. Res 93, 10255–10272 (1988).

    Article  Google Scholar 

  74. 74.

    Foley, S. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28, 435–453 (1992).

    Article  Google Scholar 

  75. 75.

    Kessel, R., Schmidt, M. W., Ulmer, P. & Pettke, T. Trace element signature of subduction zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727 (2005).

    Article  Google Scholar 

  76. 76.

    Genge, M. J., Price, G. D. & Jones, A. P. Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas. Earth Planet. Sci. Lett. 131, 225–238 (1995).

    Article  Google Scholar 

  77. 77.

    Dawson, J. B. in Mantle Xenoliths (ed. Nixon, P. H.) 465–473 (John Wiley & Sons, New York, 1987).

  78. 78.

    Harte, B., Winterburn, P. & Gurney, J. J. in Mantle Metasomatism (ed. Menzies, M. & Hawkesworth, C. J.) 145–220 (Academic, London, 1987).

Download references


The concept for this paper was born in the coffee break of a Deep Carbon Observatory Workshop in Berkeley, led by T. Plank and R. Dasgupta, to which both authors were invited and sponsored participants. D. Jacob provided critical comments and S.-A. Hodgekiss improved the figures. This is contribution 995 from the ARC Centre of Excellence for Core to Crust Fluid Systems and 1170 in the GEMOC Key Centre. T.F. acknowledges support from NSF (EAR-11130660) for this work.

Author information




S.F. planned the manuscript with input from T.F. The paper combines the complementary expertise of both authors.

Corresponding author

Correspondence to Stephen F. Foley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Foley, S.F., Fischer, T.P. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nature Geosci 10, 897–902 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing