Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Improving the operational stability of electrochemical CO2 reduction reaction via salt precipitation understanding and management

Abstract

The practical application of electrochemical carbon dioxide reduction reaction (CO2RR) technology remains hindered by poor stability, primarily owing to bicarbonate salt formation at the cathode, which blocks reactant CO2 mass flow. Here, using operando characterization tools, we tracked the salt formation process and quantified salt precipitation under varying device operational conditions, elucidating a potential mechanism and optimizing anolyte conditions for long-term (>1,000 h) operation CO2RR to CO under >100 mA cm–2. Liquid droplets carrying cations and (bi)carbonate ions were observed to migrate from the catalyst/membrane interface towards the backside of the gas diffusion electrode, driven by interfacial gas evolution and CO2 flow. These droplets eventually dried, forming bicarbonate salt precipitates that blocked the gas flow channels. On the basis of this observation, we applied a hydrophobic parylene coating to the cathode gas flow channel surface, facilitating the removal of the droplets and extending stability from ~100 h to over 500 h under 200 mA cm–2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed salt formation mechanism in CO2RR MEA electrolysers.
Fig. 2: Mechanistic studies of the salt formation in MEA reactors.
Fig. 3: Mechanistic studies of the cation migration from the catalyst/AEM interface to the backside of the GDE.
Fig. 4: Mechanistic studies of the cation migration from the catalyst/AEM interface to the backside of the GDE.
Fig. 5: CO2RR stability in an MEA electrolyser using different KHCO3 anolyte concentrations at 100 mA cm–2.
Fig. 6: The hydrophobic parylene film coating on the flow channels to remove the KHCO3 droplets.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and Supplementary Information files. Source data are provided with this paper.

References

  1. Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022).

    Article  Google Scholar 

  2. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  Google Scholar 

  3. Lees, E. W., Mowbray, B. A. W., Parlane, F. G. L. & Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 7, 55–64 (2021).

    Article  Google Scholar 

  4. Salvatore, D. A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).

    Article  MATH  Google Scholar 

  5. Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020).

    Article  MATH  Google Scholar 

  6. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  MATH  Google Scholar 

  7. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  MATH  Google Scholar 

  8. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  Google Scholar 

  9. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  MATH  Google Scholar 

  10. Xu, H. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020).

    Article  MATH  Google Scholar 

  11. Peng, C. et al. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 12, 1580 (2021).

    Article  MATH  Google Scholar 

  12. Zhou, Y. et al. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat. Catal. 5, 545–554 (2022).

    Article  MATH  Google Scholar 

  13. Kaczur, J. J., Yang, H., Liu, Z., Sajjad, S. D. & Masel, R. I. Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Front. Chem. 6, 263 (2018).

    Article  Google Scholar 

  14. Garg, S., Giron Rodriguez, C. A., Rufford, T. E., Varcoe, J. R. & Seger, B. How membrane characteristics influence the performance of CO2 and CO electrolysis. Energy Environ. Sci. 15, 4440–4469 (2022).

    Article  Google Scholar 

  15. Sassenburg, M., Kelly, M., Subramanian, S., Smith, W. A. & Burdyny, T. Zero-gap electrochemical CO2 reduction cells: challenges and operational strategies for prevention of salt precipitation. ACS Energy Lett. 8, 321–331 (2022).

    Article  Google Scholar 

  16. Disch, J. et al. High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis. Nat. Commun. 13, 6099 (2022).

    Article  MATH  Google Scholar 

  17. Ge, L. et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 8, 663–692 (2022).

    Article  MATH  Google Scholar 

  18. Endrodi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolyzers. Nat. Energy 6, 439–448 (2021).

    Article  MATH  Google Scholar 

  19. Leonard, M. E., Clarke, L. E., Forner-Cuenca, A., Brown, S. M. & Brushett, F. R. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. ChemSusChem 13, 400–411 (2020).

    Article  Google Scholar 

  20. Yang, K. et al. Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett. 6, 4291–4298 (2021).

    Article  MATH  Google Scholar 

  21. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  MATH  Google Scholar 

  22. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  MATH  Google Scholar 

  23. Qin, H. et al. Quantitative understanding of cation effects on the electrochemical reduction of CO2 and H+ in acidic solution. ACS Catal. 13, 916–926 (2022).

    Article  MATH  Google Scholar 

  24. Garg, S. et al. How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers. Energy Environ. Sci. 16, 1631–1643 (2023).

    Article  MATH  Google Scholar 

  25. El-Nagar, G. A., Haun, F., Gupta, S., Stojkovikj, S. & Mayer, M. T. Unintended cation crossover influences CO2 reduction selectivity in Cu-based zero-gap electrolysers. Nat. Commun. 14, 2062 (2023).

    Article  Google Scholar 

  26. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  MATH  Google Scholar 

  27. Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. III & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

    Article  Google Scholar 

  28. Seidel, A., Waypa, J. J. & Elimelech, M. Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane. Environ. Eng. Sci. 18, 105–113 (2001).

    Article  Google Scholar 

  29. Xu, Y. et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6, 809–815 (2021).

    Article  MATH  Google Scholar 

  30. Yan, Z., Hitt, J. L., Zeng, Z., Hickner, M. A. & Mallouk, T. E. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nat. Chem. 13, 33–40 (2021).

    Article  Google Scholar 

  31. Zhao, Y. et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth. 2, 403–412 (2023).

    MATH  Google Scholar 

  32. Endrodi, B. et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Lett. 4, 1770–1777 (2019).

    Article  MATH  Google Scholar 

  33. Kutz, R. B. et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 5, 929–936 (2017).

    Article  MATH  Google Scholar 

  34. Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    Article  Google Scholar 

  35. She, X. et al. Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A. Nat. Energy 9, 81–91 (2024).

    Article  Google Scholar 

  36. Moss, A. B. et al. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 7, 350–365 (2023).

    Article  MATH  Google Scholar 

  37. Kim, J. Y. T. et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal. 5, 288–299 (2022).

    Article  MATH  Google Scholar 

  38. Lu, X. et al. In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. 142, 15438–15444 (2020).

    Article  Google Scholar 

  39. Zhao, Y. et al. Elucidating electrochemical CO2 reduction reaction processes on Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy. Energy Environ. Sci. 15, 3968–3977 (2022).

    Article  MATH  Google Scholar 

  40. Kahouli, A. Effect of film thickness on structural, morphology, dielectric and electrical properties of parylene C films. J. Appl. Phys. 112, 064103 (2012).

    Article  MATH  Google Scholar 

  41. Hsu, J., Rieth, L., Kammer, S., Orthner, M. & Solzbacher, F. Effect of thermal and deposition processes on surface morphology, crystallinity, and adhesion of Parylene-C. Sens. Mater. 20, 87–102 (2008).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Robert A. Welch Foundation (grant number C-2051-20230405) and the David and Lucile Packard Foundation (grant number 2020-71371). X.S. acknowledges the funding support from the UL Research Institutes, USDA SBIR award (numbers 2022-70012-36900 and 2019-33610-29769), University Training and Research for Fossil Energy Applications (DOE DE-FE-0032092) and DOD DURIP (W911NF-23-1-0320). This work was partially characterized using the facilities at the Shared Equipment Authority (SEA) at Rice University.

Author information

Authors and Affiliations

Authors

Contributions

H.W. and S.H. conceived the idea and designed the experiments. H.W. supervised the project. S.H. prepared the samples, performed the experiments and analysed the data. H.W., S.H. and A.E. designed the Raman cell. A.E. assisted with the contact angle measurements, measured the thickness of the parylene and performed the multi-physics modelling. N.R. and X.S. helped perform the operando Raman experiments. T.-U.W. helped perform the TEM characterization. S.H., P.Z., F.-Y.C. and Y.X. did the SEM-EDS characterization. S.H., Y.F. and H.W. designed the schematics. S.H. and H.W. wrote the paper. S.H., A.E. and H.W. revised the paper with inputs from all authors.

Corresponding authors

Correspondence to Xiaonan Shan or Haotian Wang.

Ethics declarations

Competing interests

S.H., A.E. and H.W. are listed as inventors on a patent application filed by Rice University that pertains to this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–52, Table 1, Notes 1 and 2, and references.

Supplementary Data

Source data for Supplementary figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, S., Elgazzar, A., Ravi, N. et al. Improving the operational stability of electrochemical CO2 reduction reaction via salt precipitation understanding and management. Nat Energy 10, 266–277 (2025). https://doi.org/10.1038/s41560-024-01695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-024-01695-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing