Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A bending test protocol for characterizing the mechanical performance of flexible photovoltaics

Abstract

Flexible photovoltaic (PV) devices are a promising research field with potential for wearable, portable, indoor and internet-of-things applications. Substantial progress has been made in recent years, with flexible emerging PVs reporting power conversion efficiencies (PCEs) of over 24%. Yet, there is a need for a unifying protocol to assess PV performance, compare research results, and evaluate state-of-the-art achievements in flexible PVs. Here we present a protocol for measuring PCE over 1,000 bending cycles under 1% strain. Moreover, several good practice guidelines are proposed, including those related to bending procedures, flexibility testing with and without encapsulation, and ambient conditions during testing (for example, temperature, humidity and illumination). Notably, the importance of the uniform application of the bending radius and the testing of parallel and perpendicular orientations of the bending axis with respect to the direction of the electric current are emphasized. These recommendations aim to promote consistency in device comparison and allow for better reproducibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bending set-ups.
Fig. 2: Sample bending.
Fig. 3: Encapsulation and bending.

Similar content being viewed by others

References

  1. Almora, O. et al. Device performance of emerging photovoltaic materials (Version 4). Adv. Energy Mater. 14, 2303173 (2024).

    Article  Google Scholar 

  2. Xiao, Z. et al. Ecofriendly cellulose substrate‐based flexible transparent electrode for flexible organic solar cells with efficiency over 18%. Sol. RRL 8, 2400206 (2024).

    Article  Google Scholar 

  3. Lu, X. et al. Increase in the efficiency and stability of large-area flexible organic photovoltaic modules via improved electrical contact. Nat. Energy 9, 793–802 (2024).

    Article  Google Scholar 

  4. Weerasinghe, H. C., Huang, F. & Cheng, Y.-B. Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2, 174–189 (2013).

    Article  Google Scholar 

  5. Cai, W. et al. Interfacial engineering for efficient low‐temperature flexible perovskite solar cells. Angew. Chem. Int. Ed. 62, e202309398 (2023).

    Article  Google Scholar 

  6. Xu, W. et al. Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat. Photon. 18, 379–387 (2024).

    Article  Google Scholar 

  7. Wu, Y. et al. Stereoscopic polymer network for developing mechanically robust flexible perovskite solar cells with an efficiency approaching 25%. Adv. Mater. 36, 2403531 (2024).

    Article  Google Scholar 

  8. Hailegnaw, B. et al. Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy-autonomous drones. Nat. Energy 9, 677–690 (2024).

    Article  Google Scholar 

  9. Yang, W. et al. Overcoming charge confinement in perovskite nanocrystal solar cells. Adv. Mater. 35, 2304533 (2023).

    Article  Google Scholar 

  10. Hu, L. et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021).

    Article  Google Scholar 

  11. Kramer, I. J. & Sargent, E. H. The architecture of colloidal quantum dot solar cells: materials to devices. Chem. Rev. 114, 863–882 (2014).

    Article  Google Scholar 

  12. Xu, X. et al. 12.84% efficiency flexible kesterite solar cells by heterojunction interface regulation. Adv. Energy Mater. 13, 2301701 (2023).

    Article  Google Scholar 

  13. Deng, H. et al. Novel symmetrical bifacial flexible CZTSSe thin film solar cells for indoor photovoltaic applications. Nat. Commun. 12, 3107 (2021).

    Article  Google Scholar 

  14. Li, X. et al. Review and perspective of materials for flexible solar cells. Mater. Rep. Energy 1, 100001 (2021).

    Google Scholar 

  15. Dauzon, E. et al. Pushing the limits of flexibility and stretchability of solar cells: a review. Adv. Mater. 33, 2101469 (2021).

    Article  Google Scholar 

  16. Liu, W. et al. Flexible solar cells based on foldable silicon wafers with blunted edges. Nature 617, 717–723 (2023).

    Article  Google Scholar 

  17. Jeong, E. G., Jeon, Y., Cho, S. H. & Choi, K. C. Textile-based washable polymer solar cells for optoelectronic modules: toward self-powered smart clothing. Energy Environ. Sci. 12, 1878–1889 (2019).

    Article  Google Scholar 

  18. Wang, Z. et al. Self-sustaining personal all-day thermoregulatory clothing using only sunlight. Science 382, 1291–1296 (2023).

    Article  Google Scholar 

  19. Tu, Y. et al. Perovskite solar cells for space applications: progress and challenges. Adv. Mater. 33, 2006545 (2021).

    Article  Google Scholar 

  20. Kakei, Y. et al. Integration of body-mounted ultrasoft organic solar cell on cyborg insects with intact mobility. npj Flex. Electron. 6, 78 (2022).

    Article  Google Scholar 

  21. Nanayakkara, M. P. A. et al. Molecular weight tuning of organic semiconductors for curved organic-inorganic hybrid X‐ray detectors. Adv. Sci. 9, 2101746 (2022).

    Article  Google Scholar 

  22. Hu, Y. et al. Flexible perovskite solar cells with high power-per-weight: progress, application and perspectives. ACS Energy Lett. 6, 2917–2943 (2021).

    Article  Google Scholar 

  23. Fukuda, K., Yu, K. & Someya, T. The future of flexible organic solar cells. Adv. Energy Mater. 10, 2000765 (2020).

    Article  Google Scholar 

  24. Lee, G. et al. Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy Environ. Sci. 12, 3182–3191 (2019).

    Article  Google Scholar 

  25. Zheng, X. et al. Versatile organic photovoltaics with a power density of nearly 40 W g−1. Energy Environ. Sci. 16, 2284–2294 (2023).

    Article  Google Scholar 

  26. Huang, J. et al. Intrinsically stretchable, semi-transparent organic photovoltaics with high efficiency and mechanical robustness via a full-solution process. Energy Environ. Sci. 16, 1251–1263 (2023).

    Article  Google Scholar 

  27. Lee, J. et al. Intrinsically stretchable, highly efficient organic solar cells enabled by polymer donors featuring hydrogen‐bonding spacers. Adv. Mater. 34, 2207544 (2022).

    Article  Google Scholar 

  28. Subudhi, P. & Punetha, D. Progress, challenges and perspectives on polymer substrates for emerging flexible solar cells: a holistic panoramic review. Prog. Phot. Res. Appl. 31, 753–789 (2023).

    Article  Google Scholar 

  29. Li, S., Li, Z., Wan, X. & Chen, Y. Recent progress in flexible organic solar cells. eScience 3, 100085 (2023).

    Article  Google Scholar 

  30. Hashemi, S. A., Ramakrishna, S. & Aberle, A. G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13, 685–743 (2020).

    Article  Google Scholar 

  31. Zhang, J., Zhang, W., Cheng, H.-M. & Silva, S. R. P. Critical review of recent progress of flexible perovskite solar cells. Mater. Today 39, 66–88 (2020).

    Article  Google Scholar 

  32. Dai, Z. & Padture, N. P. Challenges and opportunities for the mechanical reliability of metal halide perovskites and photovoltaics. Nat. Energy 8, 1319–1327 (2023).

    Article  Google Scholar 

  33. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  34. International Electrotechnical Commission. Nanotechnology-Reliability Assessment—Part 2-1: Nano-Enabled Photovoltaic Devices—Stability Test, IEC TS 62876-2-1 (IEC, 2018).

  35. International Electrotechnical Commission. Flexible Display Devices—Part 6-1: Mechanical Test Methods—Deformation Tests, IEC 62715-6-1 (IEC, 2018).

  36. Sekitani, T. et al. Bending experiment on pentacene field-effect transistors on plastic films. Appl. Phys. Lett. 86, 073511 (2005).

    Article  Google Scholar 

  37. Leterrier, Y. in Handbook of Flexible Organic Electronics: Materials, Manufacturing and Applications (ed. Logothetidis, S.) 3–36 (Elsevier, 2015); https://doi.org/10.1016/B978-1-78242-035-4.00001-4

  38. Kim, D. H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article  Google Scholar 

  39. Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).

    Article  Google Scholar 

  40. Yan, C., Qin, J., Wang, Y., Li, G. & Cheng, P. Emerging strategies toward mechanically robust organic photovoltaics: focus on active layer. Adv. Energy Mater. 12, 2201087 (2022).

    Article  Google Scholar 

  41. Tu, Q., Kim, D., Shyikh, M. & Kanatzidis, M. G. Mechanics-coupled stability of metal-halide perovskites. Matter 4, 2765–2809 (2021).

    Article  Google Scholar 

  42. Méndez-Hernández, J. M., Hernández-Pérez, A., Oviedo-Mendoza, M. & Hernández-Rodríguez, E. Effects of mechanical deformations on P3HT:PCBM layers for flexible solar cells. Mech. Mater. 154, 103708 (2021).

    Article  Google Scholar 

  43. Balar, N. & O’Connor, B. T. Correlating crack onset strain and cohesive fracture energy in polymer semiconductor films. Macromolecules 50, 8611–8618 (2017).

    Article  Google Scholar 

  44. Hengst, C. et al. Mechanical properties of ZTO, ITO, and a-Si:H multilayer films for flexible thin film solar cells. Materials 10, 245 (2017).

    Article  Google Scholar 

  45. Yadavalli, S. K., Dai, Z., Zhou, H., Zhou, Y. & Padture, N. P. Facile healing of cracks in organic-inorganic halide perovskite thin films. Acta Mater. 187, 112–121 (2020).

    Article  Google Scholar 

  46. Ahn, S. M. et al. Nanomechanical approach for flexibility of organic-inorganic hybrid perovskite solar cells. Nano Lett. 19, 3707–3715 (2019).

    Article  Google Scholar 

  47. Wang, J. et al. Intrinsically stretchable organic photovoltaics by redistributing strain to PEDOT:PSS with enhanced stretchability and interfacial adhesion. Nat. Commun. 15, 4902 (2024).

    Article  Google Scholar 

  48. Lu, N., Wang, X., Suo, Z. & Vlassak, J. Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).

    Article  Google Scholar 

  49. Hamasha, M. M., Alzoubi, K. & Lu, S. Behavior of sputtered indium-tin-oxide thin film on poly-ethylene terephthalate substrate under stretching. J. Disp. Technol. 7, 426–433 (2011).

    Article  Google Scholar 

  50. Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible and mechanically robust electronics. Chem. Rev. 117, 6467–6499 (2017).

    Article  Google Scholar 

  51. Noh, J. et al. Intrinsically stretchable organic solar cells with efficiencies of over 11%. ACS Energy Lett. 6, 2512–2518 (2021).

    Article  Google Scholar 

  52. Chen, X. et al. Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a ‘Welding’ flexible transparent electrode. Adv. Mater. 32, 1908478 (2020).

    Article  Google Scholar 

  53. Dong, Q. et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability and mechanical reliability. Joule 5, 1587–1601 (2021).

    Article  Google Scholar 

  54. Dai, Z. et al. Dual-interface-reinforced flexible perovskite solar cells for enhanced performance and mechanical reliability. Adv. Mater. 34, e2205301 (2022).

    Article  Google Scholar 

  55. Suresh, S. Fatigue of Materials (Cambridge Univ. Press, 1998); https://doi.org/10.1017/CBO9780511806575

  56. Ahmad, T., Dasgupta, S., Almosni, S., Dudkowiak, A. & Wojciechowski, K. Encapsulation protocol for flexible perovskite solar cells enabling stability in accelerated aging tests. Energy Environ. Mater. 6, e12434 (2023).

    Article  Google Scholar 

  57. Sutherland, L. J., Weerasinghe, H. C. & Simon, G. P. A review on emerging barrier materials and encapsulation strategies for flexible perovskite and organic photovoltaics. Adv. Energy Mater. 11, 2101383 (2021).

    Article  Google Scholar 

  58. Castro-Hermosa, S., Top, M., Dagar, J., Fahlteich, J. & Brown, T. M. Quantifying performance of permeation barrier-encapsulation systems for flexible and glass-based electronics and their application to perovskite solar cells. Adv. Electron. Mater. 5, 1800978 (2019).

    Article  Google Scholar 

  59. Sekitani, T. et al. Ultraflexible organic field-effect transistors embedded at a neutral strain position. Appl. Phys. Lett. 87, 173502 (2005).

    Article  Google Scholar 

  60. Sawyer, E. J. et al. Large increase in stretchability of organic electronic materials by encapsulation. Extrem. Mech. Lett. 8, 78–87 (2016).

    Article  Google Scholar 

  61. Rakocevic, L. et al. Reliable performance comparison of perovskite solar cells using optimized maximum power point tracking. Sol. RRL 3, 1800287 (2019).

    Article  Google Scholar 

  62. Wei, J. et al. Mechanisms and suppression of photoinduced degradation in perovskite solar cells. Adv. Energy Mater. 11, 2002326 (2021).

    Article  Google Scholar 

  63. Zheng, X. et al. High‐efficiency ITO‐free organic photovoltaics with superior flexibility and upscalability. Adv. Mater. 34, 2200044 (2022).

    Article  Google Scholar 

  64. Jeong, S. H. et al. Characterizing the efficiency of perovskite solar cells and light-emitting diodes. Joule 4, 1206–1235 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Japan Society for the Promotion of Science under Grants-in-Aid for Scientific Research (S) (no. JP22H04949). K. Fukuda acknowledges support from JST ASPIRE for Rising Scientists (JPMJAP2336). O.A. acknowledges the Juan de la Cierva Fellowship grant FJC2021-046887-I funded by MICIU/AEI/10.13039/501100011033 and by the European Union Next Generation EU/PRTR. K. Forberich acknowledges support by the Helmholtz Association in the framework of the innovation platform ‘Solar TAP’. A.W.Y.H.-B is supported by the Australian Research Council (ARC) via Future Fellowship FT210100210. N.P.P. acknowledges support from US DOE EERE SETO (DE-EE0009511). We thank S. Xiong of RIKEN (Japan) for his support with the photography of the bending set-ups.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenjiro Fukuda or Osbel Almora.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Han-Ki Kim, Tae-Woo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Bending test checklist for characterization of mechanical performance of flexible solar cells

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, K., Sun, L., Du, B. et al. A bending test protocol for characterizing the mechanical performance of flexible photovoltaics. Nat Energy 9, 1335–1343 (2024). https://doi.org/10.1038/s41560-024-01651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-024-01651-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing