Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oscillatory solvation chemistry for a 500 Wh kg−1 Li-metal pouch cell

Subjects

Abstract

Cation solvation is well understood in the bulk solution phase, but knowledge is limited regarding the electrode–electrolyte interface. The process by which cation solvation conforms to the interfacial field to form interphases remains unclear. Here we examine the synergistic effects of external and intramolecular fields on accommodating Li+ solvates to the Li-metal anode, leading to dielectric-mediated transfer dynamics on the interface. At charged interfaces, cation–anion pairs arrange in a periodic oscillatory distribution. A low-oscillation amplitude exacerbates the electrolyte decomposition and increases surface impedance. We propose a dielectric protocol that maintains cation–anion coordination with a high oscillation amplitude at the interfaces, addressing these issues. Accordingly, we demonstrate a Li-metal pouch cell with an energy density of 500 Wh kg−1 at the Ah level using an ultra-lean electrolyte (1 g Ah−1). Our study offers insights into solid/liquid interfaces that are crucial in advancing battery technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of the interfacial electric field with the dielectric environment.
Fig. 2: Dissecting the dependence of CE on Li+ electrolytes.
Fig. 3: Interfacial dynamics of Li+ solvates.
Fig. 4: Correlation between real-time Li+ solvation and interfacial chemistry.
Fig. 5: Revealing Li plating at microstructural dimensions.
Fig. 6: Electrochemical performance of Li-metal pouch cells.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are available in the main text and Supplementary Information. Source data are provided with this paper.

References

  1. Xu, K. Interfaces and interphases in batteries. J. Power Sources 559, 232652 (2023).

    Article  Google Scholar 

  2. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  Google Scholar 

  3. Peled, E. & Menkin, S. Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Article  Google Scholar 

  4. Li, Q., Yu, X. Q. & Li, H. Batteries: from China’s 13th to 14th five-year plan. eTransportation 14, 100201 (2022).

    Article  Google Scholar 

  5. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

    Article  Google Scholar 

  6. Jiao, S. H. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

    Article  Google Scholar 

  7. Yao, Y. X. et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021).

    Article  Google Scholar 

  8. Li, T. et al. Stable anion-derived solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 60, 22683–22687 (2021).

    Article  Google Scholar 

  9. Chen, X., Zhang, X. Q., Li, H. R. & Zhang, Q. Cation-solvent, cation-anion, and solvent-solvent interactions with electrolyte solvation in lithium batteries. Batteries Supercaps 2, 128–131 (2019).

    Article  Google Scholar 

  10. Wu, Z. et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 9, 650–664 (2023).

    Article  Google Scholar 

  11. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  12. Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article  Google Scholar 

  13. Fan, X. L. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  Google Scholar 

  14. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article  Google Scholar 

  15. Xue, W. J. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article  Google Scholar 

  16. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  Google Scholar 

  17. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  Google Scholar 

  18. Li, X. et al. Understanding steric hindrance effect of solvent molecule in localized high-concentration electrolyte for lithium metal batteries. Carbon Neutrality 2, 34 (2023).

    Article  Google Scholar 

  19. Kim, S. C. et al. High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8, 814–826 (2023).

    Article  Google Scholar 

  20. Wang, Q. et al. High entropy liquid electrolytes for lithium batteries. Nat. Commun. 14, 440 (2023).

    Article  Google Scholar 

  21. Wang, Q. et al. Entropy-driven liquid electrolytes for lithium batteries. Adv. Mater. 35, e2210677 (2023).

    Article  Google Scholar 

  22. Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article  Google Scholar 

  23. Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    Article  Google Scholar 

  24. Onsager, L. Deviations from Ohm’s law in weak electrolytes. J. Chem. Phys. 2, 599–615 (1934).

    Article  Google Scholar 

  25. Zhu, Z. et al. In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 15, 6170–6176 (2015).

    Article  Google Scholar 

  26. Piechota, E. J. Deconvoluting double layers. Nat. Chem. 13, 827 (2021).

    Article  Google Scholar 

  27. Zhou, Y. et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15, 224–230 (2020).

    Article  Google Scholar 

  28. Zhang, W. et al. Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022).

    Article  Google Scholar 

  29. Kavarnos, G. J. & Turro, N. J. Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem. Rev. 86, 401–449 (1986).

    Article  Google Scholar 

  30. Looyenga, H. Dielectric constants of heterogeneous mixtures. Physica 31, 401–406 (1965).

    Article  Google Scholar 

  31. Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article  Google Scholar 

  32. Costa Reis, M. Ion activity models: the Debye-Hückel equation and its extensions. ChemTexts 7, 9 (2021).

    Article  Google Scholar 

  33. Lu, Y., Zhao, C. Z., Huang, J. Q. & Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6, 1172–1198 (2022).

    Article  Google Scholar 

  34. Kovalenko, A. & Hirata, F. Three-dimensional density profiles of water in contact with a solute of arbitrary shape: a RISM approach. Chem. Phys. Lett. 290, 237–244 (1998).

    Article  Google Scholar 

  35. Sato, H., Kovalenko, A. & Hirata, F. Self-consistent field, ab initio molecular orbital and three-dimensional reference interaction site model study for solvation effect on carbon monoxide in aqueous solution. J. Chem. Phys. 112, 9463–9468 (2000).

    Article  Google Scholar 

  36. Wang, X. et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018).

    Article  Google Scholar 

  37. Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article  Google Scholar 

  38. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  Google Scholar 

  39. Lohrberg O. et al. Benchmarking and critical design considerations of zero‐excess Li-metal batteries. Adv. Funct. Mater. 33, (2023).

  40. Adams, B. D., Zheng, J. M., Ren, X. D., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Article  Google Scholar 

  41. Cheng, L. et al. Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett. 6, 283–291 (2015).

    Article  Google Scholar 

  42. Shimizu, K., Almantariotis, D., Costa Gomes, M. F., Padua, A. A. & Canongia Lopes, J. N. Molecular force field for ionic liquids V: hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 114, 3592–3600 (2010).

    Article  Google Scholar 

  43. Sambasivarao, S. V. & Acevedo, O. Development of OPLS-AA force field parameters for 68 unique ionic liquids. J. Chem. Theory Comput. 5, 1038–1050 (2009).

    Article  Google Scholar 

  44. Efaw, C. M. et al. Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023).

    Article  Google Scholar 

  45. Zhang, Q. K. et al. Homogeneous and mechanically stable solid-electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).

    Article  Google Scholar 

  46. Zhao, Q. et al. Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries. Angew. Chem. Int. Ed. 61, e202116214 (2022).

    Article  Google Scholar 

  47. Niu, C. J. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    Article  Google Scholar 

  48. Qiao, Y. et al. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 6, 653–662 (2021).

    Article  Google Scholar 

  49. Gao, Y. et al. Effect of the supergravity on the formation and cycle life of non-aqueous lithium metal batteries. Nat. Commun. 13, 5 (2022).

    Article  Google Scholar 

  50. Niu, C. J. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article  Google Scholar 

  51. Zhang, L. H. et al. Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte. Nano Energy 96, 107122 (2022).

    Article  Google Scholar 

  52. Zhu, C. N. et al. Anion-diluent pairing for stable high-energy Li metal batteries. ACS Energy Lett. 7, 1338–1347 (2022).

    Article  Google Scholar 

  53. Xia, Y. C. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key R&D Program of Zhejiang (2023C01128), National Natural Science Foundation of China (22072134, 22161142017 and U21A2081), Natural Science Foundation of Zhejiang Province (LR23B030002 and LZ21B030002), the Fundamental Research Funds for the Central Universities (226-2024-00075) and ‘Hundred Talents Program’ of Zhejiang University. We acknowledge R. Huang from Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics for her assistance in ToF-SIMS characterization.

Author information

Authors and Affiliations

Authors

Contributions

S.Z., R.L. and X.F. conceived the idea and designed the experiments. S.Z. performed electrochemical measurements and the material characterizations. R.L. performed the theoretical calculations. S.Z., R.L., T.D. and X.F. analysed the results and revised the paper. R.Z., Hao Zhang, S.D. and Y.W. conducted the machine learning. Q.M. and X.H. performed the cycle test of 500 mAh pouch cell. R.G. and Y.L. carried out the electrochemical test of 6 Ah pouch cell. Y.S. helped the ToF-SIMS experiment. H. Zhu, M.L., Haikuo Zhang, D.L., B.M., L.L. and L.C. participated in the scientific discussion and data analysis. X.F. supervised all the studies.

Corresponding author

Correspondence to Xiulin Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Qiang Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Tables 1–7, Notes 1–8 and references.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, R., Deng, T. et al. Oscillatory solvation chemistry for a 500 Wh kg−1 Li-metal pouch cell. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01621-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41560-024-01621-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing