Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Probing intermediate configurations of oxygen evolution catalysis across the light spectrum

Abstract

The oxygen evolution reaction is crucial to sustainable electro- and photo-electrochemical approaches to chemical energy production (for example, H2). Although mechanistic descriptions of the oxygen evolution reaction have been proposed, the frontier challenge is to extract the molecular details of its elementary steps. Here we discuss how advances in spectroscopy and theory are allowing for configurations of reaction intermediates to be elucidated, distinguishing between experimental approaches (static and dynamic) across a range of surface oxygen binding energies on catalysts (from ruthenium to titanium oxides). We outline how interpreting X-ray and optical spectra relies on established and newly implemented computational techniques. A key emphasis is on detecting adsorbed oxygen intermediates at the oxide/water interface by their chemical composition, electronic and vibrational levels and ion–electron kinetic pathways. Integrating the computational advances with the experimental spectra along these lines could ultimately resolve the elementary steps, elucidating how each intermediate leads to another during oxygen evolution reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinction between pre-equilibrium and non-equilibrium OH* and O*.
Fig. 2: Non-equilibrium detection of hole–polarons.
Fig. 3: Illustrative depiction of the concerted proton–electron trajectory for the polaronic hole-trapping process.
Fig. 4: Non-equilibrium detection of reaction steps in the OER cycle.

Similar content being viewed by others

References

  1. Busch, M. et al. Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29, 126–135 (2016).

    Article  Google Scholar 

  2. Abb, M. J. S., Weber, T., Glatthaar, L. & Over, H. Growth of ultrathin single-crystalline IrO2(110) films on a TiO2(110) single crystal. Langmuir 35, 7720–7726 (2019).

    Article  Google Scholar 

  3. Reiser, C., Keßler, P., Kamp, M., Jovic, V. & Moser, S. Specific capacitance of RuO2(110) depends sensitively on surface order. J. Phys. Chem. C 127, 3682–3688 (2023).

    Article  Google Scholar 

  4. Weber, T. et al. Operando stability studies of ultrathin single-crystalline IrO2(110) films under acidic oxygen evolution reaction conditions. ACS Catal. 11, 12651–12660 (2021).

    Article  Google Scholar 

  5. Kuo, D.-Y. et al. Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J. Am. Chem. Soc. 139, 3473–3479 (2017).

    Article  Google Scholar 

  6. Kuo, D.-Y. et al. Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): a discussion of the sabatier principle and its role in electrocatalysis. J. Am. Chem. Soc. 140, 17597–17605 (2018).

    Article  Google Scholar 

  7. Keilbart, N., Okada, Y. & Dabo, I. Probing the pseudocapacitance and energy-storage performance of RuO2 facets from first principles. Phys. Rev. Mater. 3, 085405 (2019).

    Article  Google Scholar 

  8. Karlberg, G. S. et al. Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys. Rev. Lett. 99, 126101 (2007).

    Article  Google Scholar 

  9. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  Google Scholar 

  10. Pfeifer, V. et al. Reactive oxygen species in iridium-based OER catalysts. Chem. Sci. 7, 6791–6795 (2016).

    Article  Google Scholar 

  11. Hrbek, T., Kús, P., Rodriguez, M. G., Matolin, V. & Matolínová, I. Operando X-ray photoelectron spectroscopy cell for water electrolysis: a complete picture of iridium electronic structure during oxygen evolution reaction. Int. J. Hydrog. Energy 57, 187–197 (2024).

    Article  Google Scholar 

  12. Pedersen, A. F. et al. Operando XAS study of the surface oxidation state on a monolayer IrOx on RuOx and Ru oxide based nanoparticles for oxygen evolution in acidic media. J. Phys. Chem. B 122, 878–887 (2018).

    Article  Google Scholar 

  13. Che, Q. et al. In situ X-ray absorption spectroscopy of LaFeO3 and LaFeO3/LaNiO3 thin films in the electrocatalytic oxygen evolution reaction. J. Phys. Chem. C 128, 5515–5523 (2024).

    Article  Google Scholar 

  14. Axnanda, S. et al. Using ‘tender’ X-ray ambient pressure X-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 5, 9788 (2015).

    Article  Google Scholar 

  15. Favaro, M. et al. Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J. Mater. Chem. A 5, 11634–11643 (2017).

    Article  Google Scholar 

  16. Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016).

    Article  Google Scholar 

  17. Aydogan Gokturk, P. et al. The Donnan potential revealed. Nat. Commun. 13, 5880 (2022).

    Article  Google Scholar 

  18. Lichterman, M. F. et al. Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ. Sci. 8, 2409–2416 (2015).

    Article  Google Scholar 

  19. Fenter, P. et al. Electrical double-layer structure at the rutile–water interface as observed in situ with small-period X-ray standing waves. J. Colloid Interface Sci. 225, 154–165 (2000).

    Article  Google Scholar 

  20. Rao, R. R. et al. Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ. Sci. 10, 2626–2637 (2017).

    Article  Google Scholar 

  21. Qian, J., Baskin, A., Liu, Z., Prendergast, D. & Crumlin, E. J. Addressing the sensitivity of signals from solid/liquid ambient pressure XPS (APXPS) measurement. J. Chem. Phys. 153, 044709 (2020).

    Article  Google Scholar 

  22. Lyle, H., Singh, S., Paolino, M., Vinogradov, I. & Cuk, T. The electron-transfer intermediates of the oxygen evolution reaction (OER) as polarons by in situ spectroscopy. Phys. Chem. Chem. Phys. 23, 24984–25002 (2021).

    Article  Google Scholar 

  23. Vinogradov, I. et al. Free energy difference to create the M-OH* intermediate of the oxygen evolution reaction by time-resolved optical spectroscopy. Nat. Mater. 21, 88–94 (2022).

    Article  Google Scholar 

  24. Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).

    Article  Google Scholar 

  25. Righi, G. et al. On the origin of multihole oxygen evolution in haematite photoanodes. Nat. Catal. 5, 888–899 (2022).

    Article  Google Scholar 

  26. Risch, M. et al. Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis. Energy Environ. Sci. 8, 661–674 (2015).

    Article  Google Scholar 

  27. Reticcioli, M., Diebold, U. & Franchini, C. Modeling polarons in density functional theory: lessons learned from TiO2. J. Phys. Condens. Matter 34, 204006 (2022).

    Article  Google Scholar 

  28. De Lile, J. R., Bahadoran, A., Zhou, S. & Zhang, J. Polaron in TiO2 from first-principles: a review. Adv. Theory Simul. 5, 2100244 (2022).

    Article  Google Scholar 

  29. Cheng, J., VandeVondele, J. & Sprik, M. Identifying trapped electronic holes at the aqueous TiO2 interface. J. Phys. Chem. C 118, 5437–5444 (2014).

    Article  Google Scholar 

  30. Li, Y.-F. & Selloni, A. Pathway of photocatalytic oxygen evolution on aqueous TiO2 anatase and insights into the different activities of anatase and rutile. ACS Catal. 6, 4769–4774 (2016).

    Article  Google Scholar 

  31. Wang, D., Sheng, T., Chen, J., Wang, H.-F. & Hu, P. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 1, 291–299 (2018).

    Article  Google Scholar 

  32. Dabo, I., Kozinsky, B., Singh-Miller, N. E. & Marzari, N. Electrostatics in periodic boundary conditions and real-space corrections. Phys. Rev. B 77, 115139 (2008).

    Article  Google Scholar 

  33. Thatribud, A. Electronic and optical properties of TiO2 by first-principle calculation (DFT-GW and BSE). Mater. Res. Express 6, 095021 (2019).

    Article  Google Scholar 

  34. Janotti, A., Varley, J. B., Choi, M. & Van de Walle, C. G. Vacancies and small polarons in SrTiO3.Phys. Rev. B 90, 085202 (2014).

    Article  Google Scholar 

  35. Herlihy, D. M. et al. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. Nat. Chem. 8, 549–555 (2016).

    Article  Google Scholar 

  36. Zhang, M., de Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362–367 (2014).

    Article  Google Scholar 

  37. Zhang, M. & Frei, H. Water oxidation mechanisms of metal oxide catalysts by vibrational spectroscopy of transient intermediates. Annu. Rev. Phys. Chem. 68, 209–231 (2017).

    Article  Google Scholar 

  38. Zandi, O. & Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 8, 778–783 (2016).

    Article  Google Scholar 

  39. Hörmann, N. G., Andreussi, O. & Marzari, N. Grand canonical simulations of electrochemical interfaces in implicit solvation models. J. Chem. Phys. 150, 041730 (2019).

    Article  Google Scholar 

  40. Andreussi, O., Dabo, I. & Marzari, N. Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 136, 064102 (2012).

    Article  Google Scholar 

  41. Sundararaman, R., Goddard, W. A. III & Arias, T. A. Grand canonical electronic density-functional theory: algorithms and applications to electrochemistry. J. Chem. Phys. 146, 114104 (2017).

    Article  Google Scholar 

  42. Gonella, G. et al. Water at charged interfaces. Nat. Rev. Chem. 5, 466–485 (2021).

    Article  Google Scholar 

  43. Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Article  Google Scholar 

  44. Chen, B. W. J., Zhang, X. & Zhang, J. Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials. Chem. Sci. 14, 8338–8354 (2023).

    Article  Google Scholar 

  45. Chen, X. et al. The formation time of Ti–O• and Ti–O•–Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation. J. Am. Chem. Soc. 139, 1830–1841 (2017).

    Article  Google Scholar 

  46. Singh, S. et al. Coherent acoustic interferometry during the photodriven oxygen evolution reaction associates strain fields with the reactive oxygen intermediate (Ti–OH*). J. Am. Chem. Soc. 143, 15984–15997 (2021).

    Article  Google Scholar 

  47. Chen, X., Aschaffenburg, D. J. & Cuk, T. Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. Nat. Catal. 2, 820–827 (2019).

    Article  Google Scholar 

  48. Sit, P. H. L., Cococcioni, M. & Marzari, N. Realistic quantitative descriptions of electron transfer reactions: diabatic free-energy surfaces from first-principles molecular dynamics. Phys. Rev. Lett. 97, 028303 (2006).

    Article  Google Scholar 

  49. Marcus, R. A. Electrostatic free energy and other properties of states having nonequilibrium polarization. I. J. Chem. Phys. 24, 979–989 (2004).

    Article  Google Scholar 

  50. Fraggedakis, D. et al. Theory of coupled ion-electron transfer kinetics. Electrochim. Acta 367, 137432 (2021).

    Article  Google Scholar 

  51. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

    Article  Google Scholar 

  52. Bredenbeck, J., Helbing, J., Kolano, C. & Hamm, P. Ultrafast 2D-IR spectroscopy of transient species. ChemPhysChem 8, 1747–1756 (2007).

    Article  Google Scholar 

  53. Ma, Y. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014).

    Article  Google Scholar 

  54. Mucha, N. R. et al. High-performance titanium oxynitride thin films for electrocatalytic water oxidation. ACS Appl. Energy Mater. 3, 8366–8374 (2020).

    Article  Google Scholar 

  55. Roy, M. et al. Modulation of structural, electronic, and optical properties of titanium nitride thin films by regulated in situ oxidation. ACS Appl. Mater. Interfaces 15, 4733–4742 (2023).

    Article  Google Scholar 

  56. Neppl, S. & Gessner, O. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics. J. Electron. Spectrosc. Relat. Phenom. 200, 64–77 (2015).

    Article  Google Scholar 

  57. Bergmann, U. et al. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. Nat. Rev. Phys. 3, 264–282 (2021).

    Article  Google Scholar 

  58. Husek, J., Cirri, A., Biswas, S. & Baker, L. R. Surface electron dynamics in hematite (α-Fe2O3): correlation between ultrafast surface electron trapping and small polaron formation. Chem. Sci. 8, 8170–8178 (2017).

    Article  Google Scholar 

  59. Wagstaffe, M. et al. Photoinduced dynamics at the TiO2(101) interface.Phys. Rev. Lett. 130, 108001 (2023).

    Article  Google Scholar 

  60. Hu, B., Kuo, D.-Y., Paik, H., Schlom, D. G. & Suntivich, J. Enthalpy and entropy of oxygen electroadsorption on RuO2(110) in alkaline media. J. Chem. Phys. 152, 094704 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Center for Electrochemical Dynamics and Reactions at Surfaces, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award DE-SC0023415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Cuk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Lin Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suntivich, J., Hautier, G., Dabo, I. et al. Probing intermediate configurations of oxygen evolution catalysis across the light spectrum. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41560-024-01583-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing