Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design principles for enabling an anode-free sodium all-solid-state battery

Abstract

Anode-free batteries possess the optimal cell architecture due to their reduced weight, volume and cost. However, their implementation has been limited by unstable anode morphological changes and anode–liquid electrolyte interface reactions. Here we show that an electrochemically stable solid electrolyte and the application of stack pressure can solve these issues by enabling the deposition of dense sodium metal. Furthermore, an aluminium current collector is found to achieve intimate solid–solid contact with the solid electrolyte, which allows highly reversible sodium plating and stripping at both high areal capacities and current densities, previously unobtainable with conventional aluminium foil. A sodium anode-free all-solid-state battery full cell is demonstrated with stable cycling for several hundred cycles. This cell architecture serves as a future direction for other battery chemistries to enable low-cost, high-energy-density and fast-charging batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anode-free schematics and energy density calculations.
Fig. 2: Al pellet comparison with Al foil.
Fig. 3: Evaluation of NBH morphology.
Fig. 4: Evaluation of various pelletized current collectors.
Fig. 5: Evaluation of pelletized current collector morphologies.
Fig. 6: Effects of cell stack pressure and areal capacity.
Fig. 7: Anode-free sodium all-solid-state full cell cycling.

Similar content being viewed by others

Data availability

All data generated or analysed during the current study are included in this article and its Supplementary Information file.

References

  1. Nishi, Y. The dawn of lithium-ion batteries. Electrochem. Soc. Interface 25, 71–74 (2016).

    Article  Google Scholar 

  2. Hirsh, H. S. et al. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 10, 2001274 (2020).

    Article  Google Scholar 

  3. Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).

    Article  Google Scholar 

  4. Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article  Google Scholar 

  5. Tang, S. et al. A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 48, 101–106 (2018).

    Article  Google Scholar 

  6. Wu, H., Jia, H., Wang, C., Zhang, J.-G. & Xu, W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 11, 2003092 (2021).

    Article  Google Scholar 

  7. Matios, E., Wang, H., Wang, C. & Li, W. Enabling safe sodium metal batteries by solid electrolyte interphase engineering: a review. Ind. Eng. Chem. Res. 58, 9758–9780 (2019).

    Article  Google Scholar 

  8. Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    Article  Google Scholar 

  9. Gao, L., Chen, J., Chen, Q. & Kong, X. The chemical evolution of solid electrolyte interface in sodium metal batteries. Sci. Adv. 8, eabm4606 (2022).

    Article  Google Scholar 

  10. Wang, Y. et al. Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 5, 2547–2570 (2019).

    Article  Google Scholar 

  11. Lu, Z., Yang, H., Yang, Q.-H., He, P. & Zhou, H. Building a beyond concentrated electrolyte for high-voltage anode-free rechargeable sodium batteries. Angew. Chem. Int. Ed. 61, e202200410 (2022).

    Article  Google Scholar 

  12. Mao, M. et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023).

    Article  Google Scholar 

  13. Su, L., Charalambous, H., Cui, Z. & Manthiram, A. High-efficiency, anode-free lithium–metal batteries with a close-packed homogeneous lithium morphology. Energy Environ. Sci. 15, 843–854 (2022).

    Article  Google Scholar 

  14. Lin, C.-C. et al. Nanotwinned copper foil for ‘zero excess’ lithium–metal batteries. ACS Appl. Energy Mater. 6, 2140–2150 (2023).

    Article  Google Scholar 

  15. Louli, A. J. et al. Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291 (2019).

    Article  Google Scholar 

  16. Shin, W. & Manthiram, A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202115909 (2022).

    Article  Google Scholar 

  17. Spencer Jolly, D. et al. Sodium/Na β″ alumina interface: effect of pressure on voids. ACS Appl. Mater. Interfaces 12, 678–685 (2020).

    Article  Google Scholar 

  18. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000).

    Article  Google Scholar 

  19. Neudecker, B. J., Dudney, N. J. & Bates, J. B. ‘Lithium‐free’ thin‐film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517 (2000).

    Article  Google Scholar 

  20. Wang, M. J., Carmona, E., Gupta, A., Albertus, P. & Sakamoto, J. Enabling ‘lithium-free’ manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun. 11, 5201 (2020).

    Article  Google Scholar 

  21. Gu, D., Kim, H., Lee, J.-H. & Park, S. Surface-roughened current collectors for anode-free all-solid-state batteries. J. Energy Chem. 70, 248–257 (2022).

    Article  Google Scholar 

  22. Lee, D. et al. Sacrificial cathode additives for enhanced cycle performance for liquid and all-solid-state anode-free lithium secondary batteries. J. Alloys Compd. 950, 169910 (2023).

    Article  Google Scholar 

  23. Lewis, J. A. et al. Accelerated short circuiting in anode-free solid-state batteries driven by local lithium depletion. Adv. Energy Mater. 13, 2204186 (2023).

    Article  Google Scholar 

  24. Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  Google Scholar 

  25. Gu, D., Kim, H., Kim, B.-K., Lee, J.-H. & Park, S. Chlorine-rich lithium argyrodite enables stable interfacial Li plating/stripping behavior in anode-free all-solid-state batteries. CrystEngComm 25, 4182–4188 (2023).

    Article  Google Scholar 

  26. Ortmann, T. et al. Deposition of sodium metal at the copper-NaSICON interface for reservoir-free solid-state sodium batteries. Adv. Energy Mater. 14, 2302729 (2024).

    Article  Google Scholar 

  27. Heubner, C. et al. From lithium‐metal toward anode‐free solid‐state batteries: current developments, issues, and challenges. Adv. Funct. Mater. 31, 2106608 (2021).

    Article  Google Scholar 

  28. Shen, F., Dixit, M. B., Xiao, X. & Hatzell, K. B. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett. 3, 1056–1061 (2018).

    Article  Google Scholar 

  29. Kazyak, E. et al. Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2, 1025–1048 (2020).

    Article  Google Scholar 

  30. Luo, S. et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021).

    Article  Google Scholar 

  31. Yuan, C. et al. Coupled crack propagation and dendrite growth in solid electrolyte of all-solid-state battery. Nano Energy 86, 106057 (2021).

    Article  Google Scholar 

  32. Liu, S. et al. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 17, 5862–5868 (2017).

    Article  Google Scholar 

  33. Yun, Q. et al. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932–6939 (2016).

    Article  Google Scholar 

  34. Deysher, G. et al. Evaluating electrolyte–anode interface stability in sodium all-solid-state batteries. ACS Appl. Mater. Interfaces 14, 47706–47715 (2022).

    Article  Google Scholar 

  35. Duchêne, L. et al. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chem. Commun. 53, 4195–4198 (2017).

    Article  Google Scholar 

  36. Wang, M. J., Chang, J.-Y., Wolfenstine, J. B. & Sakamoto, J. Analysis of elastic, plastic, and creep properties of sodium metal and implications for solid-state batteries. Materialia 12, 100792 (2020).

    Article  Google Scholar 

  37. Orsini, F. et al. In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. J. Power Sources 76, 19–29 (1998).

    Article  Google Scholar 

  38. Orsini, F. et al. In situ SEM study of the interfaces in plastic lithium cells. J. Power Sources 81–82, 918–921 (1999).

    Article  Google Scholar 

  39. Seong, I. W., Hong, C. H., Kim, B. K. & Yoon, W. Y. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. J. Power Sources 178, 769–773 (2008).

    Article  Google Scholar 

  40. Zhou, C. et al. Polymorphism, ionic conductivity and electrochemical properties of lithium closo-deca- and dodeca-borates and their composites, Li2B10H10–Li2B12H12. J. Mater. Chem. A 10, 16137–16151 (2022).

    Article  Google Scholar 

  41. Barai, P. et al. The role of local inhomogeneities on dendrite growth in LLZO-based solid electrolytes. J. Electrochem. Soc. 167, 100537 (2020).

    Article  Google Scholar 

  42. Lu, Z. & Ciucci, F. Metal borohydrides as electrolytes for solid-state Li, Na, Mg, and Ca batteries: a first-principles study. Chem. Mater. 29, 9308–9319 (2017).

    Article  Google Scholar 

  43. Murray, J. L. The Al−Na (aluminum–sodium) system. Bull. Alloy Phase Diagr. 4, 407–410 (1983).

    Article  Google Scholar 

  44. Pelton, A. D. The Cu−Na (copper–sodium) system. Bull. Alloy Phase Diagr. 7, 25–27 (1986).

    Article  Google Scholar 

  45. Bale, C. W. The Na–Ti (sodium–titanium) system. Bull. Alloy Phase Diagr. 10, 138–139 (1989).

    Article  Google Scholar 

  46. Samsonov, G. V. Handbook of the Physicochemical Properties of the Elements (Springer Science & Business Media, 2012).

  47. Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021).

    Article  Google Scholar 

  48. Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020).

    Article  Google Scholar 

  49. Zhou, L. et al. High areal capacity, long cycle life 4V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    Article  Google Scholar 

  50. Zhou, L. et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci. 13, 2056–2063 (2020).

    Article  Google Scholar 

  51. Zhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. New family of argyrodite hioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141, 19002–19013 (2019).

    Article  Google Scholar 

  52. Ham, S.-Y. et al. Assessing the critical current density of all-solid-state Li metal symmetric and full cells. Energy Storage Mater. 55, 455–462 (2023).

    Article  Google Scholar 

  53. Doux, J. M. et al. Stack pressure considerations for room‐temperature all‐solid‐state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2020).

    Article  Google Scholar 

  54. LePage, W. S., Chen, Y., Poli, A., Thouless, M. D. & Dasgupta, N. P. Sodium mechanics: effects of temperature, strain rate, and grain rotation and implications for sodium metal batteries. Extreme Mech. Lett. 52, 101644 (2022).

    Article  Google Scholar 

  55. Ridley, P. et al. Amorphous and nanocrystalline halide solid electrolytes with enhanced sodium-ion conductivity. Matter 7, 485–499 (2024).

    Article  Google Scholar 

  56. Schlenker, R. et al. Understanding the lifetime of battery cells based on solid-state Li6PS5Cl electrolyte paired with lithium metal electrode. ACS Appl. Mater. Interfaces 12, 20012–20025 (2020).

    Article  Google Scholar 

  57. Yang, Z. et al. Developing a high-voltage electrolyte based on conjuncto-hydroborates for solid-state sodium batteries. J. Mater. Chem. A 10, 7186–7194 (2022).

    Article  Google Scholar 

  58. Jin, M., Yang, Z., Cheng, S. & Guo, Y. Fast sodium-ion conduction in a novel conjuncto-hydroborate of Na4B20H18. ACS Appl. Energy Mater. 5, 15578–15585 (2022).

    Article  Google Scholar 

  59. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  Google Scholar 

  60. Su, Y. et al. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci. 13, 908–916 (2020).

    Article  Google Scholar 

  61. Bonnick, P. et al. A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte. J. Mater. Chem. A 7, 24173–24179 (2019).

    Article  Google Scholar 

  62. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  Google Scholar 

  63. Liang, J. et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries. Adv. Energy Mater. 9, 1902125 (2019).

    Article  Google Scholar 

  64. Zhang, Z. et al. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J. Power Sources 410–411, 162–170 (2019).

    Article  Google Scholar 

  65. Garcia-Mendez, R., Mizuno, F., Zhang, R., Arthur, T. S. & Sakamoto, J. Effect of processing conditions of 75Li2S-25P2S5 solid electrolyte on its DC electrochemical behavior. Electrochim. Acta 237, 144–151 (2017).

    Article  Google Scholar 

  66. Zhang, Z. et al. One-step solution process toward formation of Li6PS5Cl argyrodite solid electrolyte for all-solid-state lithium-ion batteries. J. Alloys Compd. 812, 152103 (2020).

    Article  Google Scholar 

  67. Pang, B. et al. Ag nanoparticles incorporated interlayer enables ultrahigh critical current density for Li6PS5Cl-based all-solid-state lithium batteries. J. Power Sources 563, 232836 (2023).

    Article  Google Scholar 

  68. Wu, M. et al. In situ formed LiF-Li3N interface layer enables ultra-stable sulfide electrolyte-based all-solid-state lithium batteries. J. Energy Chem. 79, 272–278 (2023).

    Article  Google Scholar 

  69. Subramanian, Y., Rajagopal, R., Kang, S. & Ryu, K.-S. Enhancement of lithium argyrodite interface stability through MoO2 substitution and its application in lithium solid state batteries. J. Alloys Compd. 925, 166596 (2022).

    Article  Google Scholar 

  70. Zou, C. et al. LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 and chlorine-rich argyrodite enabling high-performance all-solid-state lithium batteries at suitable stack pressure. Ceram. Int. 49, 443–449 (2023).

    Article  Google Scholar 

  71. Subramanian, Y., Rajagopal, R. & Ryu, K.-S. Blending a Li3N/Li3YCl6 solid electrolyte with Li6PS5Cl argyrodite structure to improve interface stability and electrochemical performance in lithium solid-state batteries. J. Alloys Compd. 940, 168867 (2023).

    Article  Google Scholar 

  72. Liu, Y. et al. Revealing the impact of Cl substitution on the crystallization behavior and interfacial stability of superionic lithium argyrodites. Adv. Funct. Mater. 32, 2207978 (2022).

    Article  Google Scholar 

  73. Lewis, J. A. et al. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries. ACS Appl. Mater. Interfaces 14, 4051–4060 (2022).

    Article  Google Scholar 

  74. Wang, G. et al. Hydrolysis-resistant and anti-dendritic halide composite Li3PS4-LiI solid electrolyte for all-solid-state lithium batteries. Electrochim. Acta 428, 140906 (2022).

    Article  Google Scholar 

  75. Zhao, B. et al. Stabilizing Li7P3S11/lithium metal anode interface by in-situ bifunctional composite layer. Chem. Eng. J. 429, 132411 (2022).

    Article  Google Scholar 

  76. Wu, M., Liu, G. & Yao, X. Oxygen doped argyrodite electrolyte for all-solid-state lithium batteries. Appl. Phys. Lett. 121, 203904 (2022).

    Article  Google Scholar 

  77. Kim, H.-M., Subramanian, Y. & Ryu, K.-S. Improved electrochemical and air stability performance of SeS2 doped argyrodite lithium superionic conductors for all-solid-state lithium batteries. Electrochim. Acta 442, 141869 (2023).

    Article  Google Scholar 

  78. Ni, Y., Huang, C., Liu, H., Liang, Y. & Fan, L.-Z. A high air-stability and Li-metal-compatible Li3+2xP1−xBixS4−1.5xO1.5x sulfide electrolyte for all-solid-state Li–metal batteries. Adv. Funct. Mater. 32, 2205998 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

Funding to support this work was provided by the National Science Foundation through the Partnerships for Innovation (PFI) grant number 2044465 received by Y.S.M. This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (grant ECCS-2025752). We acknowledge the use of facilities and instrumentation at the UC Irvine Materials Research Institute (IMRI), which is supported in part by the National Science Foundation through the UC Irvine Materials Research Science and Engineering Center (DMR-2011967). Specifically, the XPS work was performed using instrumentation funded in part by the National Science Foundation Major Research Instrumentation Program under grant number CHE-1338173. Xe plasma FIB experiments were conducted at the University of Southern California in the Core Center of Excellence in Nano Imaging. We also acknowledge the use of the UCSD Crystallography Facility.

Author information

Authors and Affiliations

Authors

Contributions

G.D., J.J. and Y.S.M. conceived the ideas. G.D. and J.J. designed the cell architecture and electrochemical measurements, which were performed by G.D. G.D. performed optical profilometry experiments. Y-T.C. collected plasma FIB images, and G.D. and S-Y.H. collected gallium FIB data. S-Y.H. performed X-ray CT experiments. B.S. and K.Q. collected the XRD data. D.C. performed the TEM imaging experiments. G.D. wrote the manuscript. J.J., J.A.S.O, L.H.B.N., P.R., A.C. and S.W.-H.L. participated in the scientific discussion and helped edit the manuscript. Discussion of the results included all authors. All authors have provided input on and have approved the final manuscript.

Corresponding authors

Correspondence to Jihyun Jang or Ying Shirley Meng.

Ethics declarations

Competing interests

A provisional patent application (US Provisional Application serial number 63590739) for this work has been filed by G.D. and Y.S.M. through UC San Diego’s Office of Innovation and Commercialization. This patent application contains claims related to the use of aluminium particles pressed into an NBH electrolyte separator for use as a current collector in an anode-free battery. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Sangbaek Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–21.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deysher, G., Oh, J.A.S., Chen, YT. et al. Design principles for enabling an anode-free sodium all-solid-state battery. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41560-024-01569-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing