Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembled network polymer electrolyte membranes for application in fuel cells at 250 °C

Abstract

Operating polymer electrolyte membrane (PEM) fuel cells at high temperatures can simplify water management and allow integration with high-purity fuel processing units. However, existing polybenzimidazole (PBI)-based PEM fuel cells face challenges due to the instability of proton transport above 160 °C. Here we report a PEM composed of para-PBI (p-PBI) and cerium hydrogen phosphate (CeHP) that can be used in a fuel cell at up to 250 °C. During fabrication, echinoid-shaped CeHP particles form a well-dispersed and interconnected self-assembled network within the PBI matrix (SAN–CeHP–PBI), allowing them to outperform p-PBI and conventional CeHP–PBI PEMs in terms of proton transport above 200 °C. We report a SAN–CeHP–PBI-based fuel cell that reaches a maximum power density of 2.35 W cm−2 (at 250 °C in dry H2/O2) with negligible degradation over 500 h during thermal cycling (at 160–240 °C, H2/air). SAN–CeHP–PBI also demonstrates excellent CO tolerance, showing promise for integration with liquid hydrogen carrier systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Membrane fabrication.
Fig. 2: Comparison of an echinoid-shaped, self-assembled network polymer electrolyte membrane and other materials.
Fig. 3: Enhanced proton transport at high temperatures.
Fig. 4: Fuel cell performance of SAN–CeHP–PBI.
Fig. 5: Operational stability of SAN–CeHP–PBI.
Fig. 6: Overwhelmed electrochemical performance of SAN–CeHP–PBI.
Fig. 7: Operational reliability and durability of SAN–CeHP–PBI.
Fig. 8: Performance of the HT-PEMFC integrated with an LHC processor.

Similar content being viewed by others

Data availability

The data supporting the plots of this article and source data for the Supplementary Information are available via Zenodo at https://doi.org/10.5281/zenodo.10908280 (ref. 54). Source data are provided with this paper.

References

  1. Lim, K. H. et al. Protonated phosphonic acid electrodes for high-power heavy-duty vehicle fuel cells. Nat. Energy 7, 248–259 (2022).

    Article  Google Scholar 

  2. Cullen, D. A. et al. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021).

    Article  Google Scholar 

  3. Shao, Y., Yin, G., Wang, Z. & Gao, Y. Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J. Power Sources 167, 235–242 (2007).

    Article  Google Scholar 

  4. Chiou, J. S. & Paul, D. R. Gas permeation in a dry Nafion membrane. Ind. Eng. Chem. Res. 27, 2161–2164 (1988).

    Article  Google Scholar 

  5. Park, C. H. et al. Nanocrack-regulated self-humidifying membranes. Nature 532, 480–483 (2016).

    Article  Google Scholar 

  6. Zhang, J. et al. High-temperature PEM fuel cells. J. Power Sources 160, 872–891 (2006).

    Article  Google Scholar 

  7. Savinell, R. et al. A polymer electrolyte for operation at temperatures up to 200 °C. J. Electrochem. Soc. 141, L46–L48 (1994).

    Article  Google Scholar 

  8. Moçotéguy, P. et al. Long-term testing in dynamic mode of HT-PEMFC H3PO4/PBI celtec-P based membrane electrode assemblies for micro-CHP applications. Fuel Cells 10, 299–311 (2010).

    Article  Google Scholar 

  9. Schuster, M., Rager, T., Noda, A., Kreuer, K. D. & Maier, J. About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 5, 355–365 (2005).

    Article  Google Scholar 

  10. Melchior, J. P., Majer, G. & Kreuer, K. D. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells? Phys. Chem. Chem. Phys. 19, 601–612 (2017).

    Article  Google Scholar 

  11. Krueger, R. A., Vilčiauskas, L., Melchior, J. P., Bester, G. & Kreuer, K. D. Mechanism of efficient proton conduction in diphosphoric acid elucidated via first-principles simulation and NMR. J. Phys. Chem. B 119, 15866–15875 (2015).

    Article  Google Scholar 

  12. Lee, K. S. et al. Intermediate-temperature fuel cells via an ion-pair coordinated polymer electrolyte. Energy Environ. Sci. 11, 979–987 (2018).

    Article  Google Scholar 

  13. Lee, K. S., Spendelow, J. S., Choe, Y. K., Fujimoto, C. & Kim, Y. S. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs. Nat. Energy 1, 16120 (2016).

    Article  Google Scholar 

  14. Atanasov, V. et al. Synergistically integrated phosphonated poly(pentafluorostyrene) for fuel cells. Nat. Mater. 20, 370–377 (2021).

    Article  Google Scholar 

  15. Li, X. et al. Construction of high-performance, high-temperature proton exchange membranes through incorporating SiO2 nanoparticles into novel cross-linked polybenzimidazole networks. ACS Appl. Mater. Interfaces 11, 30735–30746 (2019).

    Article  Google Scholar 

  16. Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D. & Pinar, F. J. Enhancement of the fuel cell performance of a high-temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. J. Power Sources 196, 8265–8271 (2011).

    Article  Google Scholar 

  17. Zhang, J. et al. In situ formed phosphoric acid/phosphosilicate nanoclusters in the exceptional enhancement of durability of polybenzimidazole membrane fuel cells at elevated high temperatures. J. Electrochem. Soc. 164, F1615 (2017).

    Article  Google Scholar 

  18. Aili, D. et al. Polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells: new insights and recent progress. Electrochem. Energy Rev. 3, 793–845 (2020).

    Article  Google Scholar 

  19. Singh, B. et al. High-temperature polymer electrolyte membrane fuel cells with polybenzimidazole-Ce0.9Gd0.1P2O7 and polybenzimidazole-Ce0.9Gd0.1P2O7-graphite oxide composite electrolytes. J. Power Sources 401, 149–157 (2018).

  20. Lee, J. W. et al. Synthesis and characterization of acid-doped polybenzimidazole membranes by sol–gel and post-membrane casting method. J. Membr. Sci. 357, 130–133 (2010).

    Article  Google Scholar 

  21. Bhavsar, R. S., Kumbharkar, S. C., Rewar, A. S. & Kharul, U. K. Polybenzimidazole-based film-forming polymeric ionic liquids: synthesis and effects of cation–anion variation on their physical properties. Polym. Chem. 5, 4083–4096 (2014).

    Article  Google Scholar 

  22. Goward, G. R., Schuster, M. F. H., Sebastiani, D., Schnell, I. & Spiess, H. W. High-resolution solid-state NMR studies of imidazole-based proton conductors: structure motifs and chemical exchange from 1H NMR. J. Phys. Chem. B 106, 9322–9334 (2002).

    Article  Google Scholar 

  23. Lee, A. S., Choe, Y. K., Matanovic, I. & Kim, Y. S. The energetics of phosphoric acid interactions reveals a new acid loss mechanism. J. Mater. Chem. A 7, 9867–9876 (2019).

    Article  Google Scholar 

  24. Suarez, S. et al. Multinuclear NMR study of the effect of acid concentration on ion transport in phosphoric acid doped poly(benzimidazole) membranes. J. Phys. Chem. B 116, 12545–12551 (2012).

    Article  Google Scholar 

  25. Melchior, J. P., Kreuer, K. D. & Maier, J. Proton conduction mechanisms in the phosphoric acid-water system (H4P2O7-H3PO4·2H2O): a 1H, 31P and 17O PFG-NMR and conductivity study. Phys. Chem. Chem. Phys. 19, 587–600 (2017).

    Article  Google Scholar 

  26. Zhang, J., Xiang, Y., Lu, S. & Jiang, S. P. High-temperature polymer electrolyte membrane fuel cells for integrated fuel cell—methanol reformer power systems: a critical review. Adv. Sustain. Syst. 2, 1700184 (2018).

    Article  Google Scholar 

  27. Jensen, J. O., Li, Q., He, R., Pan, C. & Bjerrum, N. J. 100–200 °C polymer fuel cells for use with NaAlH4. J. Alloys Compd. 404-406, 653–656 (2005).

    Article  Google Scholar 

  28. Mustarelli, P., Quartarone, E., Grandi, S., Carollo, A. & Magistris, A. Polybenzimidazole-based membranes as a real alternative to Nafion for fuel cells operating at low temperature. Adv. Mater. 20, 1339–1343 (2008).

    Article  Google Scholar 

  29. Sapkota, P., Boyer, C., Dutta, R., Cazorla, C. & Aguey-Zinsou, K. F. Planar polymer electrolyte membrane fuel cells: powering portable devices from hydrogen. Sustain. Energy Fuels 4, 439–468 (2020).

    Article  Google Scholar 

  30. Zhang, J. et al. PEM fuel cells operated at 0% relative humidity in the temperature range of 23–120 °C. Electrochim. Acta 52, 5095–5101 (2007).

    Article  Google Scholar 

  31. Mamlouk, M. & Scott, K. The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell. Int. J. Hydrogen Energy 35, 784–793 (2010).

    Article  Google Scholar 

  32. Lee, W. J. et al. Improvement of fuel cell performances through the enhanced dispersion of the PTFE binder in electrodes for use in high-temperature polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 45, 32825–32833 (2020).

    Article  Google Scholar 

  33. Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D. & Pinar, F. J. Promising TiOSO4 composite polybenzimidazole-based membranes for high-temperature PEMFCs. ChemSusChem 4, 1489–1497 (2011).

  34. Li, X. et al. Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells. Chem. Mater. 32, 1182–1191 (2020).

    Article  Google Scholar 

  35. Aili, D. et al. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C. J. Mater. Chem. A 4, 4019–4024 (2016).

    Article  Google Scholar 

  36. Sun, X. et al. Proton conductivity of CeP2O7 for intermediate temperature fuel cells. Solid State Ionics 179, 1138–1141 (2008).

    Article  Google Scholar 

  37. Chen, X. et al. A proton conductor electrolyte based on molten CsH5(PO4)2 for intermediate-temperature fuel cells. RSC Adv. 8, 5225–5232 (2018).

    Article  Google Scholar 

  38. Jensen, A. H., Li, Q., Christensen, E. & Bjerrum, N. J. Intermediate-temperature fuel cell using CsH2PO4/ZrO2-based composite electrolytes. J. Electrochem. Soc. 161, F72 (2014).

  39. Nagao, M. et al. A proton-conducting In3+ -doped SnP2O7 electrolyte for intermediate-temperature fuel cells. Electrochem. Solid-State Lett. 9, A105–A109 (2006).

  40. Uda, T. & Haile, S. M. Thin-membrane solid-acid fuel cell. Electrochem. Solid-State Lett. 8, A245–A246 (2005).

    Article  Google Scholar 

  41. Duan, C. et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015).

    Article  Google Scholar 

  42. Wachsman, E. D. & Lee, K. T. Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011).

    Article  Google Scholar 

  43. Borup, R. et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904–3951 (2007).

    Article  Google Scholar 

  44. Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

    Article  Google Scholar 

  45. Orfanidi, A., Daletou, M. K. & Neophytides, S. G. Mitigation strategy towards stabilizing the electrochemical interface under high CO- and H2O-containing reformate gas feed. Electrochim. Acta 233, 218–228 (2017).

    Article  Google Scholar 

  46. Zhang, C., Zhou, W., Ehteshami, M. M., Wang, Y. & Chan, S. H. Determination of the optimal operating temperature range for high-temperature PEM fuel cell considering its performance, CO tolerance and degradation. Energy Convers. Manage. 105, 433–441 (2015).

    Article  Google Scholar 

  47. Papavasiliou, J., Avgouropoulos, G. & Ioannides, T. CuMnOx catalysts for internal reforming methanol fuel cells: application aspects. Int. J. Hydrogen Energy 37, 16739–16747 (2012).

    Article  Google Scholar 

  48. Shakshooki, S. K., El-Akari, F. A., El-Fituri, S. M. & El-Fituri, S. S. Fibrous cerium (IV) hydrogen phosphate membrane self-supported benzimidazole polymerization agent. Adv. Mater. Res. 856, 3–8 (2014).

    Article  Google Scholar 

  49. Alberti, G., Constantino, U., Di Gregorio, F., Galli, P. & Torracca, E. Crystalline insoluble salts of polybasic metals—III: preparation and ion exchange properties of cerium(IV) phosphate of various crystallinities. J. Inorg. Nucl. Chem. 30, 295–304 (1968).

    Article  Google Scholar 

  50. Albert, G. & Costantino, U. Crystalline insoluble acid salts of tetravalent metals: X. Fibrous thorium phophate, a new inorganic ion-exchange material suitable for making (support-free) inorganic sheets. J. Chromatogr. A 50, 482–486 (1970).

    Article  Google Scholar 

  51. Seo, K., Nam, K. H. & Han, H. Proton transport in aluminum-substituted mesoporous silica channel-embedded high-temperature anhydrous proton-exchange membrane fuel cells. Sci. Rep. 10, 10352 (2020).

    Article  Google Scholar 

  52. Li, Y. et al. Recent advances in the fabrication of advanced composite membranes. J. Mater. Chem. A 1, 10058–10077 (2013).

    Article  Google Scholar 

  53. Takahashi, T. et al. 207Pb chemical shift thermometer at high temperature for magic angle spinning experiments. Solid State Nucl. Magn. Reson. 15, 119–123 (1999).

    Article  Google Scholar 

  54. Lee, S. et al. Self-assembled network polymer electrolyte membranes for application in fuel cells at 250 °C. Zenodo https://doi.org/10.5281/zenodo.10908279

  55. Xiao, L. et al. High-temperature polybenzimidazole fuel cell membranes via a sol−gel process. Chem. Mater. 17, 5328–5333 (2005).

    Article  Google Scholar 

  56. Ma, Y. L., Wainright, J. S., Litt, M. H. & Savinell, R. F. Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J. Electrochem. Soc. 151, A8–A16 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the KIST Institutional Program from the Korea Institute of Science and Technology (S.L., Y.J., S.-J.H., Y.P., Y.C.K., H.-Y.P., J.H.J., H.-J.K., S.-W.N., S.Y.L.) and supported by National Research Foundation of Korea (NRF) grant funded by Korea government (MIST) (NRF-2022M3J1A1065570 (S.-J.H., G.G., K.H.L., H.-Y.P., J.H.J., H.-J.K., S.-W.N., S.Y.L.) and RS-2023-00235295 (S.-J.H., G.G., K.H.L., H.-Y.P., J.H.J., H.-J.K., S.-W.N., S.Y.L.)).

Author information

Authors and Affiliations

Authors

Contributions

S.Y.L. and S.-W.N. developed the intellectual concept and supervised this research. H.-J.K. guided the work of sol–gel-type polymer synthesis and HT-PEMFC testing. S.L., Y.J. and S.Y.L. wrote the first paper draft with support from other coauthors. J.G.S., S.-J.H., G.G. and S.Y.L. wrote the revised paper. S.L. prepared SAN–CeHP–PBI, fabricated most of the MEAs and performed the experiments on the fuel cells. G.G. evaluated the reproducibility of SAN–CeHP–PBI by fabricating MEAs. G.G. determined the electrochemical performance above 250 °C. K.H.L. provided support for manufacturing PA-doped homemade electrodes and AST durability testing. Y.P. prepared the dehydrogenation of hydrogenated N-ethylcarbazole. Y.J. and Y.C.K. measured the performance of an HT-PEMFC integrated with a LHC processor. S.-J.H. conducted the NMR analysis and analysed the NMR data. Interpretation of the NMR data in accordance with the changes in proton transport in SAN–CeHP–PBI with temperature was conducted by S.-J.H., J.G.S. and S.Y.L. H.-Y.P. and J.H.J. provided support for the electrochemical performance testing and analysis. All the authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Hyoung-Juhn Kim, Suk-Woo Nam or So Young Lee.

Ethics declarations

Competing interests

S.Y.L., S.L., J.H.J., H.-J.K., S.-W.N., Y.J. and Y.C.K. were granted a US patent (US11569523B2) on 31 January 2023 related to this work. J.G.S. is employed by Samsung Advanced Institute of Technology (SAIT) in Samsung Electronics Co. Y.J. is employed by AMOGY Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Vladimir Atanasov, Mounesha Garaga, Ronghuan He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–13, Tables 1–4 and References 1–29.

Supplementary Data 1

Source Data for Supplementary Figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Seong, J.G., Jo, Y. et al. Self-assembled network polymer electrolyte membranes for application in fuel cells at 250 °C. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41560-024-01536-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing